Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 219: 684-694, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30557725

RESUMO

In some locations, artisanal and small-scale gold-mining (ASGM) represents a significant source of anthropogenic Hg to freshwater environments. The Hg released from ASGM can contaminate aquatic fauna and pose health risks to downstream populations. Total Hg (THg) concentrations, speciation, and isotopic compositions were analyzed in water, suspended particulate matter, soil, and bottom sediment samples from pristine areas and in places of active and legacy gold mining along the Oyapock River (French Guiana) and its tributaries. Mass-independent fractionation (MIF) of even Hg isotopes in top soils (Δ200Hg = -0.06 ±â€¯0.02‰, n = 10) implied the uptake of gaseous Hg(0) by plants, rather than wet deposition, as the primary Hg source. Odd isotope MIF was lower in deep soils (Δ199Hg = -0.75 ±â€¯0.03‰, n = 7) than in top soils (Δ199Hg = -0.55 ±â€¯0.15‰, n = 3). This variation could be attributed to differences between the isotopic signatures of modern and pre-industrial atmospheric Hg. Combining a Hg-isotope binary mixing model with a multiple linear regression based on physico-chemical parameters measured in the sediment samples, we determined that active mined creek sediments are contaminated by ASGM activities, with up to 78% of THg being anthropogenic. Of this anthropogenic Hg, more than half (66-74%) originates from liquid Hg(0) that is released during ASGM. The remaining anthropogenic Hg comes from the ASGM-driven erosion of Hg-rich soils into the river. The isotope signatures of anthropogenic Hg in bottom sediments were no longer traceable in formerly mined rivers and creeks.


Assuntos
Monitoramento Ambiental/métodos , Ouro , Isótopos de Mercúrio/análise , Mineração , Rios/química , Sedimentos Geológicos/química , Mercúrio/análise , Solo/química , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 51(11): 5899-5906, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28440654

RESUMO

Environmental regulations on mercury (Hg) emissions and associated ecosystem restoration are closely linked to what Hg levels we consider natural. It is widely accepted that atmospheric Hg deposition has increased by a factor 3 ± 1 since preindustrial times. However, no long-term historical records of actual atmospheric gaseous elemental Hg (GEM) concentrations exist. In this study we report Hg stable isotope signatures in Pyrenean peat records (southwestern Europe) that are used as tracers of Hg deposition pathway (Δ200Hg, wet vs dry Hg deposition) and atmospheric Hg sources and cycling (δ202Hg, Δ199Hg). By anchoring peat-derived GEM dry deposition to modern atmospheric GEM levels we are able to reconstruct the first millennial-scale atmospheric GEM concentration record. Reconstructed GEM levels from 1970 to 2010 agree with monitoring data, and maximum 20th century GEM levels of 3.9 ± 0.5 ng m-3 were 15 ± 4 times the natural Holocene background of 0.27 ± 0.11 ng m-3. We suggest that a -0.7‰ shift in δ202Hg during the medieval and Renaissance periods is caused by deforestation and associated biomass burning Hg emissions. Our findings suggest therefore that human impacts on the global mercury cycle are subtler and substantially larger than currently thought.


Assuntos
Isótopos de Mercúrio , Solo , Áreas Alagadas , Poluentes Atmosféricos , Monitoramento Ambiental , Europa (Continente) , Humanos , Mercúrio
3.
Environ Sci Technol ; 51(3): 1186-1194, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28013537

RESUMO

Methylmercury (MeHg) accumulation in marine organisms poses serious ecosystem and human health risk, yet the sources of MeHg in the surface and subsurface ocean remain uncertain. Here, we report the first MeHg mass budgets for the Western Pacific Ocean estimated based on cruise observations. We found the major net source of MeHg in surface water to be vertical diffusion from the subsurface layer (1.8-12 nmol m-2 yr-1). A higher upward diffusion in the North Pacific (12 nmol m-2 yr-1) than in the Equatorial Pacific (1.8-5.7 nmol m-2 yr-1) caused elevated surface MeHg concentrations observed in the North Pacific. We furthermore found that the slope of the linear regression line for MeHg versus apparent oxygen utilization in the Equatorial Pacific was about 2-fold higher than that in the North Pacific. We suggest this could be explained by redistribution of surface water in the tropical convergence-divergence zone, supporting active organic carbon decomposition in the Equatorial Pacific Ocean. On the basis of this study, we predict oceanic regions with high organic carbon remineralization to have enhanced MeHg concentrations in both surface and subsurface waters.


Assuntos
Monitoramento Ambiental , Compostos de Metilmercúrio , Oceanos e Mares , Oceano Pacífico , Movimentos da Água
4.
Environ Sci Technol ; 50(5): 2405-12, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26849121

RESUMO

Gaseous elemental mercury (GEM) is the dominant form of mercury in the atmosphere. Its conversion into oxidized gaseous and particulate forms is thought to drive atmospheric mercury wet deposition to terrestrial and aquatic ecosystems, where it can be subsequently transformed into toxic methylmercury. The contribution of mercury dry deposition is however largely unconstrained. Here we examine mercury mass balance and mercury stable isotope composition in a peat bog ecosystem. We find that isotope signatures of living sphagnum moss (Δ(199)Hg = -0.11 ± 0.09‰, Δ(200)Hg = 0.03 ± 0.02‰, 1σ) and recently accumulated peat (Δ(199)Hg = -0.22 ± 0.06‰, Δ(200)Hg = 0.00 ± 0.04‰, 1σ) are characteristic of GEM (Δ(199)Hg = -0.17 ± 0.07‰, Δ(200)Hg = -0.05 ± 0.02‰, 1σ), and differs from wet deposition (Δ(199)Hg = 0.73 ± 0.15‰, Δ(200)Hg = 0.21 ± 0.04‰, 1σ). Sphagnum covered during three years by transparent and opaque surfaces, which eliminate wet deposition, continue to accumulate Hg. Sphagnum Hg isotope signatures indicate accumulation to take place by GEM dry deposition, and indicate little photochemical re-emission. We estimate that atmospheric mercury deposition to the peat bog surface is dominated by GEM dry deposition (79%) rather than wet deposition (21%). Consequently, peat deposits are potential records of past atmospheric GEM concentrations and isotopic composition.


Assuntos
Atmosfera/química , Gases/análise , Mercúrio/análise , Solo , Áreas Alagadas , Ecossistema , Monitoramento Ambiental , França , Geografia , Isótopos de Mercúrio , Peso Molecular
5.
Anal Chem ; 87(21): 11122-9, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26460188

RESUMO

We propose a novel analytical method for mercury (Hg) trace determination based on direct Hg preconcentration from aqueous solution onto a gold nanoparticle-decorated silica monolith (AuNP@SiO2). Detection of Hg is performed after thermal desorption by means of atomic fluorescence spectrometry. This new methodology benefits from reagent-free, time- and cost-saving procedure, due to most efficient solid-phase adsorbent and results in high sensitive quantification. The excellent analytical performance of the whole procedure is demonstrated by a limit of detection as low as 1.31 ng L(-1) for only one-min accumulation duration. A good reproducibility with standard deviations ≤5.4% is given. The feasibility of the approach in natural waters was confirmed by a recovery experiment in spiked seawater with a recovery rate of 101%. Moreover, the presented method was validated through reference analysis of a submarine groundwater discharge sample by cold vapor-atomic fluorescence spectrometry resulting in a very good agreement of the found values. Hence the novel method is a very promising new tool for low-level Hg monitoring in natural waters providing easy-handling on-site preconcentration, reagent-free stabilization as well as reagent-free, highly sensitive detection.


Assuntos
Ouro/química , Mercúrio/análise , Nanopartículas Metálicas/química , Poluentes Químicos da Água/análise , Adsorção , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes
6.
Talanta ; 141: 26-32, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25966376

RESUMO

Gold nanoparticles (AuNPs) were deposited on a glassy carbon (GC) substrate by constant potential electrolysis and characterized by cyclic voltammetry in H2SO4 and field emission gun scanning electron microscopy (FEG-SEM). The modified AuNPs-GC electrode was used for low Hg(II) concentration detection using a Square Wave Anodic Stripping Voltammetry (SWASV) procedure which included a chloride desorption step. The comparison of the obtained results with our previous work in which no desorption step was used showed that this latter step significantly improved the analytical performances, providing a three time higher sensitivity and a limit of detection of 80pM for 300s preconcentration, as well as a lower average standard deviation. The influence of chloride concentration on the AuNPs-GC electrode response to Hg(II) trace amounts was also studied and its optimal value confirmed to be in the 10(-2)M range. Finally, the AuNPs-GC electrode was used for the determination of Hg(II) in a natural groundwater sample from south of France. By using a preconcentration time of 3000s, a Hg(II) concentration of 19±3pM was found, which compared well with the result obtained by cold vapor atomic fluorescence spectroscopy (22±2pM).


Assuntos
Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Mercúrio/análise , Nanopartículas Metálicas/química , Poluentes Químicos da Água/análise , Carbono/química , Cloretos/química , Desenho de Equipamento , França , Ouro , Água Subterrânea/análise , Microscopia Eletrônica de Varredura
7.
Sci Rep ; 5: 10318, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25993348

RESUMO

Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79 °N). Here we present the first central Arctic Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.


Assuntos
Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Regiões Árticas , Biota , Monitoramento Ambiental , Camada de Gelo , Mercúrio/análise , Oceanos e Mares
8.
Nature ; 512(7512): 65-8, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25100482

RESUMO

Mercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by 36-1,313 million moles since the 1500s. Such predictions have remained largely untested owing to a lack of appropriate historical data and natural archives. Here we report oceanographic measurements of total dissolved mercury and related parameters from several recent expeditions to the Atlantic, Pacific, Southern and Arctic oceans. We find that deep North Atlantic waters and most intermediate waters are anomalously enriched in mercury relative to the deep waters of the South Atlantic, Southern and Pacific oceans, probably as a result of the incorporation of anthropogenic mercury. We estimate the total amount of anthropogenic mercury present in the global ocean to be 290 ± 80 million moles, with almost two-thirds residing in water shallower than a thousand metres. Our findings suggest that anthropogenic perturbations to the global mercury cycle have led to an approximately 150 per cent increase in the amount of mercury in thermocline waters and have tripled the mercury content of surface waters compared to pre-anthropogenic conditions. This information may aid our understanding of the processes and the depths at which inorganic mercury species are converted into toxic methyl mercury and subsequently bioaccumulated in marine food webs.


Assuntos
Monitoramento Ambiental/métodos , Atividades Humanas , Mercúrio/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Dióxido de Carbono/análise , Expedições , Cadeia Alimentar , Oceanografia , Oceanos e Mares , Oxigênio/metabolismo
9.
Environ Sci Technol ; 48(13): 7660-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24905585

RESUMO

Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p < 0.05) to 17 (p < 0.1) of the 28 pairwise comparisons between eight global regions are statistically distinguishable on the basis of δ(202)Hg, Δ(199)Hg or both, highlighting the potential application of Hg isotope signatures to coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).


Assuntos
Poluentes Atmosféricos/química , Carvão Mineral/análise , Internacionalidade , Mercúrio/análise , Mercúrio/química , Fracionamento Químico , China , Florida , Isótopos de Mercúrio/análise , Peso Molecular , Centrais Elétricas , Rios
10.
Anal Bioanal Chem ; 405(21): 6771-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23852146

RESUMO

High-precision mercury (Hg) stable isotopic analysis requires relatively large amounts of Hg (>10 ng). Consequently, the extraction of Hg from natural samples with low Hg concentrations (<1-20 ng/g) by wet chemistry is challenging. Combustion-trapping techniques have been shown to be an appropriate alternative. Here, we detail a modified off-line Hg pre-concentration protocol that is based on combustion and trapping. Hg in solid samples is thermally reduced and volatilized in a pure O2 stream using a temperature-programmed combustion furnace. A second furnace, kept at 1,000 °C, decomposes combustion products into H2O, CO2, SO2, etc. The O2 carrier gas, including combustion products and elemental Hg, is then purged into a 40% (v/v) acid-trapping solution. The method was optimized by assessing the variations of Hg pre-concentration efficiency and Hg isotopic compositions as a function of acid ratio, gas flow rate, and temperature ramp rate for two certified reference materials of bituminous coals. Acid ratios of 2HNO3/1HCl (v/v), 25 mL/min O2 flow rate, and a dynamic temperature ramp rate (15 °C/min for 25-150 and 600-900 °C; 2.5 °C/min for 150-600 °C) were found to give optimal results. Hg step-release experiments indicated that significant Hg isotopic fractionation occurred during sample combustion. However, no systematic dependence of Hg isotopic compositions on Hg recovery (81-102%) was observed. The tested 340 samples including coal, coal-associated rocks, fly ash, bottom ash, peat, and black shale sediments with Hg concentrations varying from <5 ng/g to 10 µg/g showed that most Hg recoveries were within the acceptable range of 80-120%. This protocol has the advantages of a short sample processing time (∼3.5 h) and limited transfer of residual sample matrix into the Hg trapping solution. This in turn limits matrix interferences on the Hg reduction efficiency of the cold vapor generator used for Hg isotopic analysis.

11.
Environ Pollut ; 159(6): 1629-34, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21435758

RESUMO

Under stratified oligotrophic conditions (May-November), the surface mixed layer of the Northwestern Mediterranean constitutes a homogeneous water volume of 10-30 m depth. In other respects, the mean residence time of Ligurian surface waters (0-200 m) is 102 days. It is therefore possible to quantify the extent to which atmospheric deposition of trace metals affects surface waters. On the basis of literature data on anthropogenic and natural trace metals, we demonstrate that the ratios between total seawater labile atmospheric deposition during 102 days (Δc) and dissolved TM concentrations in Ligurian surface waters (c) illustrate the impact of atmospheric deposition on surface seawater (Δc/c). High ratios indicate surface TM enrichments, while low ratios indicate surface TM depletion, due to the quasi-complete sorption and removal of TMs by plankton during spring bloom. The simple box model proposed here may be used for other marine regions where hydrodynamical and physico-chemical constraints are well defined.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Água do Mar/química , Oligoelementos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Mar Mediterrâneo , Metais/análise , Modelos Químicos
12.
Sci Total Environ ; 408(13): 2629-38, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20382411

RESUMO

Climatic and anthropogenic changes are able to engender modifications in the aerosol composition at different geographical and temporal scales. The present study addresses this question for the trace metal concentrations (TM=Al, Fe, Mn, Co, Ni, Cu, Pb, Cd and Zn) of aerosol from the North-western Mediterranean coast of France (Cap Ferrat, nearby Nice) between 1986 and 2008. From seasonal variations (2006-08) and decadal trends (1986-2008) of TM concentrations, three groups of elements can be distinguished. They consist of different aerosol sources: crustal-derived elements (Al, Fe, Mn and Co), trace metals of anthropogenic origin (Pb, Cd and Zn) and a third, intermediate, group of trace metals that presented both anthropogenic and natural/crustal influences (Ni and Cu). Reproducible seasonal patterns were observed for crustal and intermediate elements with highest concentrations between May and November, while anthropogenic trace metals did not show a pronounced seasonal cycle. Nevertheless, highest concentrations of anthropogenic trace metals occurred mostly in autumn/winter. Aerosol concentrations of anthropogenic TMs decreased remarkably over the last two decades, while crustal trace metals did not show any evolution. Nickel and copper aerosol concentrations remained constant, as well. Lead concentrations decreased from 1986 (29.34 ng m(-3)) to 2008 (3.33 ng m(-3)), overall by 90%. Cadmium and zinc aerosol concentrations decreased by 66 and 54%, respectively, between 1998 and 2006-08, from 0.27 to 0.09 ng m(-3) and from 23.9 to 10.9 ng m(-3), respectively. These findings demonstrate the response of the atmospheric environment to the implementation of antipollution policies. Possible changes of trace metal emissions sources and local influences are discussed.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Metais/análise , Aerossóis/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Mar Mediterrâneo , Estações do Ano , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...