Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(14): 8393-8402, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876003

RESUMO

Dye-sensitized solar cells (DSSCs) based on ZnO photoanodes have, despite extensive research, lagged behind cells based on TiO2, which is due to generally lower open-circuit voltages VOC and fill factors. Here, DSSCs have been prepared using Mg-doped ZnO (MZO) photoanodes based on nanoparticles, thin films or ZnO-MZO core-shell-type nanoparticles with varying Mg-concentration. The cells were studied in detailed photoelectrochemical and photoluminescence experiments. It was confirmed that VOC was significantly increased by Mg-doping. A clear influence of the Mg-concentration was also revealed on the transport and recombination of electrons in MZO, leading to a higher cell performance at low and lower cell performance at high concentrations of Mg in MZO. Nanoparticles with a pure ZnO core and an MZO shell offered a way to lower the influence of increased transport resistance in MZO and to capitalize on the significantly improved VOC.

2.
J Phys Condens Matter ; 31(1): 014001, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30499455

RESUMO

(Ga,In)As/GaAs/Ga(As,Sb) and (Ga,In)As/GaAs/Ga(N,As) type-II double quantum well heterostructures have been grown by metal-organic vapor phase epitaxy. A growth interruption procedure was used to intentionally modify the morphology of the internal interfaces. The heterostructures were investigated using continuous wave and time-resolved photoluminescence as well as optical pump-optical probe spectroscopy. We find a correlation between the interface morphology and optical and kinetic properties. A growth interruption of about 120 s yielded substantially smoother interfaces both on vertical as well as lateral length scales. On the other hand a considerably enhanced type-II recombination time as well as a longer electron tunneling time are observed. We attribute this to a reduced interface localization in case of smoother interfaces.

3.
ACS Appl Mater Interfaces ; 9(48): 42020-42028, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29135216

RESUMO

The great majority of electronic and optoelectronic devices depend on interfaces between p-type and n-type semiconductors. Finding matching donor-acceptor systems in molecular semiconductors remains a challenging endeavor because structurally compatible molecules may not necessarily be suitable with respect to their optical and electronic properties, and the large exciton binding energy in these materials may favor bound electron-hole pairs rather than free carriers or charge transfer at an interface. Regardless, interfacial charge-transfer exciton states are commonly considered as an intermediate step to achieve exciton dissociation. The formation efficiency and decay dynamics of such states will strongly depend on the molecular makeup of the interface, especially the relative alignment of donor and acceptor molecules. Structurally well-defined pentacene-perfluoropentacene heterostructures of different molecular orientations are virtually ideal model systems to study the interrelation between molecular packing motifs at the interface and their electronic properties. Comparing the emission dynamics of the heterosystems and the corresponding unitary films enables accurate assignment of every observable emission signal in the heterosystems. These heterosystems feature two characteristic interface-specific luminescence channels at around 1.4 and 1.5 eV that are not observed in the unitary samples. Their emission strength strongly depends on the molecular alignment of the respective donor and acceptor molecules, emphasizing the importance of structural control for device construction.

4.
J Phys Condens Matter ; 29(8): 08LT02, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28081013

RESUMO

Layered transition-metal dichalcogenides have attracted great interest in the last few years. Thinned down to the monolayer limit they change from an indirect band structure to a direct band gap in the visible region. Due to the monolayer thickness the inversion symmetry of the crystal is broken and spin and valley are coupled to each other. The degeneracy between the two equivalent valleys, K and K', respectively, can be lifted by applying an external magnetic field. Here, we present photoluminescence measurements of CVD-grown tungsten disulphide (WS2) monolayers at temperatures of 2 K. By applying magnetic fields up to 7 T in Faraday geometry, a splitting of the photoluminescence peaks can be observed. The magnetic field dependence of the A-exciton, the trion and three bound exciton states is discussed and the corresponding g-factors are determined.

5.
Sci Rep ; 6: 28224, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27320182

RESUMO

Graphene photo-detectors functionalized by colloidal quantum dots (cQDs) have been demonstrated to show effective photo-detection. Although the transfer of charge carriers or energy from the cQDs to graphene is not sufficiently understood, it is clear that the mechanism and efficiency of the transfer depends on the morphology of the interface between cQDs and graphene, which is determined by the shell of the cQDs in combination with its ligands. Here, we present a study of a graphene field-effect transistor (FET), which is functionalized by long-ligand CdSe/ZnS core/shell cQDs. Time-resolved photo-luminescence from the cQDs as a function of the applied gate voltage has been investigated in order to probe transfer dynamics in this system. Thereby, a clear modification of the photo-luminescence lifetime has been observed, indicating a change of the decay channels. Furthermore, we provide responsivities under a Förster-like energy transfer model as a function of the gate voltage in support of our findings. The model shows that by applying a back-gate voltage to the photo-detector, the absorption can be tuned with respect to the photo-luminescence of the cQDs. This leads to a tunable energy transfer rate across the interface of the photo-detector, which offers an opportunity to optimize the photo-detection.

6.
Phys Chem Chem Phys ; 18(5): 3825-31, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26763133

RESUMO

The polarization-resolved absorption spectra are determined for different pentacene polymorphs, both, for thin films grown on ZnO as well as for free-standing single crystals. A clear interrelation between the Davydov splitting of the lowest-energy singlet-exciton type transitions and the herringbone angle of the molecules in the unit cell is found. The variation in oscillator strength of the individual excitonic Davydov components with temperature is explained by a variation of this herringbone angle. The extraordinarily strong variation of the herringbone angle for Campbell phase pentacene films grown on ZnO substrates is attributed to interface-mediated strain due to the different thermal expansion coefficients of the organic and inorganic constituents.

7.
Nanotechnology ; 27(5): 055101, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26670636

RESUMO

Manganese-doped CdS/ZnS quantum dots have been used as energy donors in a Förster-like resonance energy transfer (FRET) process to enhance the effective lifetime of organic fluorophores. It was possible to tune the effective lifetime of the fluorophores by about six orders of magnitude from the nanosecond (ns) up to the millisecond (ms) region. Undoped and Mn-doped CdS/ZnS quantum dots functionalized with different dye molecules were selected as a model system for investigating the multiple energy transfer process and the specific interaction between Mn ions and the attached dye molecules. While the lifetime of the free dye molecules was about 5 ns, their linking to undoped CdS/ZnS quantum dots led to a long effective lifetime of about 150 ns, following a non-exponential transient. Manganese-doped core-shell quantum dots further enhanced the long-lasting decay time of the dye to several ms. This opens up a pathway to analyse different fluorophores in the time domain with equal spectral emissions. Such lifetime multiplexing would be an interesting alternative to the commonly used spectral multiplexing in fluorescence detection schemes.

8.
Small ; 11(8): 896-904, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25504784

RESUMO

Colloidal particles with fluorescence read-out are commonly used as sensors for the quantitative determination of ions. Calcium, for example, is a biologically highly relevant ion in signaling, and thus knowledge of its spatio-temporal distribution inside cells would offer important experimental data. However, the use of particle-based intracellular sensors for ion detection is not straightforward. Important associated problems involve delivery and intracellular location of particle-based fluorophores, crosstalk of the fluorescence read-out with pH, and spectral overlap of the emission spectra of different fluorophores. These potential problems are outlined and discussed here with selected experimental examples. Potential solutions are discussed and form a guideline for particle-based intracellular imaging of ions.


Assuntos
Técnicas Biossensoriais , Cálcio/química , Nanotecnologia/métodos , Óptica e Fotônica , Benzoxazinas/química , Endocitose , Corantes Fluorescentes/química , Ouro/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Íons , Nanopartículas Metálicas/química , Microscopia de Fluorescência , Tamanho da Partícula , Peptídeos/química , Polímeros/química
9.
Nano Lett ; 14(8): 4523-8, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24972185

RESUMO

Successful doping and excellent optical activation of Eu(3+) ions in ZnO nanowires were achieved by ion implantation. We identified and assigned the origin of the intra-4f luminescence of Eu(3+) ions in ZnO by first-principles calculations to Eu-Oi complexes, which are formed during the nonequilibrium ion implantation process and subsequent annealing at 700 °C in air. Our targeted defect engineering resulted in intense intrashell luminescence of single ZnO:Eu nanowires dominating the photoluminescence spectrum even at room temperature. The high intensity enabled us to study the luminescence of single ZnO nanowires in detail, their behavior as a function of excitation power, waveguiding properties, and the decay time of the transition.


Assuntos
Európio/química , Luminescência , Nanofios/química , Óxido de Zinco/química
10.
Langmuir ; 28(24): 8915-9, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22444199

RESUMO

Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.


Assuntos
Fluorescência , Nanopartículas Metálicas/química , Prata/química , Coloides/síntese química , Coloides/química , Tamanho da Partícula , Propriedades de Superfície
11.
Nanoscale Res Lett ; 6(1): 228, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21711734

RESUMO

Transients of Mn internal 3d5 luminescence in ZnS/Mn nanowires are strongly non-exponential. This non-exponential decay arises from an excitation transfer from the Mn ions to so-called killer centers, i.e., non-radiative defects in the nanostructures and is strongly related to the interplay of the characteristic length scales of the sample such as the spatial extensions, the distance between killer centers, and the distance between Mn ions. The transients of the Mn-related luminescence can be quantitatively described on the basis of a modified Förster model accounting for reduced dimensionality. Here, we confirm this modified Förster model by varying the number of killer centers systematically. Additional defects were introduced into the ZnS/Mn nanowire samples by irradiation with neon ions and by varying the Mn implantation or the annealing temperature. The temporal behavior of the internal Mn2+ (3d5) luminescence is recorded on a time scale covering almost four orders of magnitude. A correlation between defect concentration and decay behavior of the internal Mn2+ (3d5) luminescence is established and the energy transfer processes in the system of localized Mn ions and the killer centers within ZnS/Mn nanostructures is confirmed. If the excitation transfer between Mn ions and killer centers as well as migration effects between Mn ions are accounted for, and the correct effective dimensionality of the system is used in the model, one is able to describe the decay curves of ZnS/Mn nanostructures in the entire time window.

12.
ACS Nano ; 5(1): 21-5, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21261307

RESUMO

Multiplexed measurements of several analytes in parallel using analyte-sensitive organic fluorophores can be hampered by spectral overlap of the different fluorophores. The authors discuss how nanoparticles can help to overcome this problem. First, different organic fluorophores can be separated spatially by confining them to separate containers, each bearing a nanoparticle-based barcode. Second, by coupling different fluorophores to nanoparticles with different fluorescence lifetimes that serve as donors for excitation transfer, the effective fluorescence lifetime of the organic fluorophores as acceptors can be tuned by fluorescence resonance energy transfer (FRET). Thus, the fluorophores can be distinguished by their effective lifetimes. This is an example of how the modification of classical functional materials has already yielded improved and even new functionalities by the integration of nanoparticles with hybrid materials. We outline future opportunities in this area.

13.
J Am Chem Soc ; 126(3): 797-807, 2004 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-14733554

RESUMO

Arrays of highly ordered Zn(1-x)MnxS quantum wires with x ranging from 0.01 to 0.3 and with lateral dimensions of 3, 6, and 9 nm were synthesized within mesoporous SiO2 host structures of the MCM-41 and SBA-15 type. The hexagonal symmetry of these arrays (space group p6m) and the high degree of order was confirmed by X-ray diffraction and transmission electron microscopy (TEM) studies. Physisorption measurements show the progressive filling of the pores of the SiO2 host structures, while TEM and Raman studies reveal the wire-like character of the incorporated Zn(1-x)MnxS nanostructures. X-ray absorption near-edge structure, extended X-ray absorption fine structure, photoluminescence excitation (PLE), and electron paramagnetic resonance studies confirm the good crystalline quality of the incorporated Zn(1-x)MnxS guest species and, in particular, that the Mn2+ ions are randomly distributed and are situated on tetrahedrally coordinated cation sites of the Zn(1-x)MnxS wires for all x up to 0.3. The amount of Mn2+ ions loosely bound to the surface of the Zn(1-x)MnxS nanowires is less than 4% of the total Mn content even for the 3 nm nanostructures up to the highest Mn content of x = 0.3. The effects of the reduction of the lateral dimensions on electronic properties of the diluted magnetic semiconductor were studied by PLE spectroscopy. Due to the quantum confinement of the excitons in the wires an increase of the direct band gap with decreasing particle size is observed.

14.
Chemistry ; 8(1): 185-94, 2002 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-11822450

RESUMO

We present a novel way of synthesising highly ordered arrays of hollow Cd(1-x)Mn(x)S quantum wires with lateral dimensions of 3-4 nm separated by 1-2 nm SiO2 barriers by forming Cd(1-x)Mn(x)S (0 < or = x < or = 1) semiconductors inside the pore system of mesoporous MCM-41 SiO2 host structures. X-ray diffraction and transmission electron microscopy (TEM) studies reveal the hexagonal symmetry of these arrays (space group p6m) and confirm the high degree of order. Physisorption measurements show the filling of the pores of the MCM-41 SiO2. The X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), electron paramagentic resonance (EPR), and Raman studies confirm the good crystalline quality of the incorporated (Cd,Mn)S guest. The effects of reducing the lateral dimensions on the magnetic and electronic properties of the diluted magnetic semiconductor were studied by photoluminescence (PL) and PL excitation spectroscopy and by SQUID and EPR measurements in the temperature range 2-400 K. Due to the quantum confinement of the excitons in the wires, an increase of about 200 meV in the direct band gap was observed. In addition, the p-d hybridisation-related bowing of the band gap as a function of Mn concentration in the wires is much stronger than in the bulk. This effect is related to the increase in the band gap due to quantum confinement, which shifts the p-like valence band edge closer to the 3d-related states of Mn in the valence band. Thus, the p-d hybridisation and the strength of the band gap bowing are increased. Compared to bulk (II,Mn)VI compounds, antiferromagnetic coupling between the magnetic moments of the Mn2+ ions is weaker. For the samples with high Mn concentrations (x > 0.8) this leads to a suppression of the phase transition of the Mn system from paramagnetic to antiferromagnetic. This effect can be explained by the fact that the lateral dimensions of the wires are smaller than the magnetic length scale of the antiferromagnetic ordering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...