Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(11): 2448-2459.e4, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38754425

RESUMO

Adaptive behavioral responses to stressors are critical for survival. However, which brain areas orchestrate switching the appropriate stress responses to distinct contexts is an open question. This study aimed to identify the cell-type-specific brain circuitry governing the selection of distinct behavioral strategies in response to stressors. Through novel mouse behavior paradigms, we observed distinct stressor-evoked behaviors in two psycho-spatially distinct contexts characterized by stressors inside or outside the safe zone. The identification of brain regions activated in both conditions revealed the involvement of the dorsomedial hypothalamus (DMH). Further investigation using optogenetics, chemogenetics, and photometry revealed that glutamatergic projections from the DMH to periaqueductal gray (PAG) mediated responses to inside stressors, while GABAergic projections, particularly from tachykinin1-expressing neurons, played a crucial role in coping with outside stressors. These findings elucidate the role of cell-type-specific circuitry from the DMH to the PAG in shaping behavioral strategies in response to stressors. These findings have the potential to advance our understanding of fundamental neurobiological processes and inform the development of novel approaches for managing context-dependent and anxiety-associated pathological conditions such as agoraphobia and claustrophobia.


Assuntos
Tronco Encefálico , Estresse Psicológico , Animais , Camundongos , Masculino , Tronco Encefálico/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Optogenética , Hipotálamo/fisiologia , Neurônios/fisiologia
2.
Elife ; 132024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270590

RESUMO

Object detection is an essential function of the visual system. Although the visual cortex plays an important role in object detection, the superior colliculus can support detection when the visual cortex is ablated or silenced. Moreover, it has been shown that superficial layers of mouse SC (sSC) encode visual features of complex objects, and that this code is not inherited from the primary visual cortex. This suggests that mouse sSC may provide a significant contribution to complex object vision. Here, we use optogenetics to show that mouse sSC is involved in figure detection based on differences in figure contrast, orientation, and phase. Additionally, our neural recordings show that in mouse sSC, image elements that belong to a figure elicit stronger activity than those same elements when they are part of the background. The discriminability of this neural code is higher for correct trials than for incorrect trials. Our results provide new insight into the behavioral relevance of the visual processing that takes place in sSC.


Assuntos
Colículos Superiores , Córtex Visual , Animais , Camundongos , Optogenética , Percepção Visual
3.
Elife ; 122023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796249

RESUMO

Experience-dependent plasticity in the adult visual system is generally thought of as a cortical process. However, several recent studies have shown that perceptual learning or monocular deprivation can also induce plasticity in the adult dorsolateral geniculate nucleus (dLGN) of the thalamus. How plasticity in the thalamus and cortex interact in the adult visual system is ill-understood. To assess the influence of thalamic plasticity on plasticity in primary visual cortex (V1), we made use of our previous finding that during the critical period ocular dominance (OD) plasticity occurs in dLGN and requires thalamic synaptic inhibition. Using multielectrode recordings we find that this is also true in adult mice, and that in the absence of thalamic inhibition and plasticity, OD plasticity in adult V1 is absent. To study the influence of V1 on thalamic plasticity, we silenced V1 and show that during the critical period, but not in adulthood, the OD shift in dLGN is partially caused by feedback from V1. We conclude that during adulthood the thalamus plays an unexpectedly dominant role in experience-dependent plasticity in V1. Our findings highlight the importance of considering the thalamus as a potential source of plasticity in learning events that are typically thought of as cortical processes.


Assuntos
Dominância Ocular , Córtex Visual , Camundongos , Animais , Tálamo/fisiologia , Córtex Visual/fisiologia , Corpos Geniculados/fisiologia , Inibição Psicológica , Plasticidade Neuronal/fisiologia
4.
Invest Ophthalmol Vis Sci ; 64(11): 9, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548962

RESUMO

Purpose: Human albinos have a low visual acuity. This is partially due to the presence of spontaneous erroneous eye movements called pendular nystagmus. This nystagmus is present in other albino vertebrates and has been hypothesized to be caused by aberrant wiring of retinal ganglion axons to the nucleus of the optic tract (NOT), a part of the accessory optic system involved in the optokinetic response to visual motion. The NOT in pigmented rodents is preferentially responsive to ipsiversive motion (i.e., motion in the contralateral visual field in the temporonasal direction). We compared the response to visual motion in the NOT of albino and pigmented mice to understand if motion coding and preference are impaired in the NOT of albino mice. Methods: We recorded neuronal spiking activity with Neuropixels probes in the visual cortex and NOT in C57BL/6JRj mice (pigmented) and DBA/1JRj mice with oculocutaneous albinism (albino). Results: We found that in pigmented mice, NOT is retinotopically organized, and neurons are direction tuned, whereas in albino mice, neuronal tuning is severely impaired. Neurons in the NOT of albino mice do not have a preference for ipsiversive movement. In contrast, neuronal tuning in visual cortex was preserved in albino mice and did not differ significantly from the tuning in pigmented mice. Conclusions: We propose that excessive interhemispheric crossing of retinal projections in albinos may cause the disrupted left/right direction encoding we found in NOT. This, in turn, impairs the normal horizontal optokinetic reflex and leads to pendular albino nystagmus.


Assuntos
Albinismo , Nistagmo Optocinético , Nistagmo Patológico , Área Pré-Tectal , Células Ganglionares da Retina , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Córtex Visual , Vias Visuais
6.
Curr Opin Neurobiol ; 77: 102650, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36399897

RESUMO

Many organisms rely on a capacity to rapidly replicate, disperse, and evolve when faced with uncertainty and novelty. But mammals do not evolve and replicate quickly. They rely on a sophisticated nervous system to generate predictions and select responses when confronted with these challenges. An important component of their behavioral repertoire is the adaptive context-dependent seeking or avoiding of perceptually novel objects, even when their values have not yet been learned. Here, we outline recent cross-species breakthroughs that shed light on how the zona incerta (ZI), a relatively evolutionarily conserved brain area, supports novelty-seeking and novelty-related investigations. We then conjecture how the architecture of the ZI's anatomical connectivity - the wide-ranging top-down cortical inputs to the ZI, and its specifically strong outputs to both the brainstem action controllers and to brain areas involved in action value learning - place the ZI in a unique role at the intersection of cognitive control and learning.


Assuntos
Zona Incerta , Animais , Comportamento Exploratório , Aprendizagem , Encéfalo , Cabeça , Mamíferos
7.
J Neurosci Methods ; 373: 109548, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35240222

RESUMO

BACKGROUND: Long-term manipulation of activity in the neonatal rodent brain can help us understand healthy development, but also involves a set of challenges unique to the neonatal animal. As pups are small, cannot be separated from their mother for long periods of time, and must be housed in a nest, many traditional techniques are unusable during the first two postnatal weeks. NEW METHOD: Here, we describe the use of magnetic resonance induction to allow wireless and chronic optogenetic manipulation of spontaneous activity in mouse pups during the second postnatal week. RESULTS: Pups were implanted with a lightweight receiver coupled to an LED and successfully returned to the homecage. A transmitter coil surrounding the homecage drove the implanted LED and was regulated by a microcontroller to allow flexible, precisely-timed and wireless control over neuronal manipulation. In vivo patch-clamp recordings verified that activation of the LED triggered bursts of action potentials in layer 2/3 neurons that expressed channelrhodopsin-2 in the visual cortex without directly affecting neighboring, non-expressing neurons. The implants are stable and functional for at least 10 days and do not have an impact on the weight gain of pups. Implanted pups' behavior is mildly affected only briefly after surgery, while maternal behavior of dams remains unaffected. COMPARISON WITH EXISTING METHOD(S): In contrast to most other methods for wireless optogenetic stimulation, the small size and low weight of the receiver allow complete implantation in animals that are as small as a newborn mouse. CONCLUSIONS: This method is ideal for investigating the function and development of cortical circuits in small and developing animals. Furthermore, our method is economical and easy to adapt to diverse experimental designs.


Assuntos
Neurônios , Optogenética , Animais , Animais Recém-Nascidos , Encéfalo/fisiologia , Channelrhodopsins , Feminino , Camundongos , Neurônios/fisiologia , Optogenética/métodos
8.
Elife ; 102021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34570697

RESUMO

Neurophysiological studies depend on a reliable quantification of whether and when a neuron responds to stimulation. Simple methods to determine responsiveness require arbitrary parameter choices, such as binning size, while more advanced model-based methods require fitting and hyperparameter tuning. These parameter choices can change the results, which invites bad statistical practice and reduces the replicability. New recording techniques that yield increasingly large numbers of cells would benefit from a test for cell-inclusion that requires no manual curation. Here, we present the parameter-free ZETA-test, which outperforms t-tests, ANOVAs, and renewal-process-based methods by including more cells at a similar false-positive rate. We show that our procedure works across brain regions and recording techniques, including calcium imaging and Neuropixels data. Furthermore, in illustration of the method, we show in mouse visual cortex that (1) visuomotor-mismatch and spatial location are encoded by different neuronal subpopulations and (2) optogenetic stimulation of VIP cells leads to early inhibition and subsequent disinhibition.


Assuntos
Inibição Neural/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Masculino , Camundongos , Optogenética
9.
Sci Adv ; 7(27)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34193411

RESUMO

The segregation of figures from the background is an important step in visual perception. In primary visual cortex, figures evoke stronger activity than backgrounds during a delayed phase of the neuronal responses, but it is unknown how this figure-ground modulation (FGM) arises and whether it is necessary for perception. Here, we show, using optogenetic silencing in mice, that the delayed V1 response phase is necessary for figure-ground segregation. Neurons in higher visual areas also exhibit FGM and optogenetic silencing of higher areas reduced FGM in V1. In V1, figures elicited higher activity of vasoactive intestinal peptide-expressing (VIP) interneurons than the background, whereas figures suppressed somatostatin-positive interneurons, resulting in an increased activation of pyramidal cells. Optogenetic silencing of VIP neurons reduced FGM in V1, indicating that disinhibitory circuits contribute to FGM. Our results provide insight into how lower and higher areas of the visual cortex interact to shape visual perception.

10.
Science ; 372(6543)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33986154

RESUMO

Exploring the physical and social environment is essential for understanding the surrounding world. We do not know how novelty-seeking motivation initiates the complex sequence of actions that make up investigatory behavior. We found in mice that inhibitory neurons in the medial zona incerta (ZIm), a subthalamic brain region, are essential for the decision to investigate an object or a conspecific. These neurons receive excitatory input from the prelimbic cortex to signal the initiation of exploration. This signal is modulated in the ZIm by the level of investigatory motivation. Increased activity in the ZIm instigates deep investigative action by inhibiting the periaqueductal gray region. A subpopulation of inhibitory ZIm neurons expressing tachykinin 1 (TAC1) modulates the investigatory behavior.


Assuntos
Córtex Cerebral/fisiologia , Comportamento Exploratório , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Córtex Pré-Frontal/fisiologia , Zona Incerta/fisiologia , Animais , Nível de Alerta , Axônios/fisiologia , Comportamento Animal , Feminino , Masculino , Camundongos , Motivação , Inibição Neural , Vias Neurais , Optogenética , Interação Social , Taquicininas/metabolismo , Ácido gama-Aminobutírico/metabolismo
11.
J Exp Biol ; 224(Pt 6)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33568444

RESUMO

Innate defensive responses such as freezing or escape are essential for animal survival. Mice show defensive behaviour to stimuli sweeping overhead, like a bird cruising the sky. Here, we tested this in young male mice and found that mice reduced their defensive freezing after sessions with a stimulus passing overhead repeatedly. This habituation is stimulus specific, as mice freeze again to a novel shape. Habituation occurs regardless of the visual field location of the repeated stimulus. The mice generalized over a range of sizes and shapes, but distinguished objects when they differed in both size and shape. Innate visual defensive responses are thus strongly influenced by previous experience as mice learn to ignore specific stimuli.


Assuntos
Reação de Fuga , Habituação Psicofisiológica , Animais , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Nat Commun ; 12(1): 1026, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589589

RESUMO

Proprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles. Altogether, these features contribute to finely regulate proprioception during complex motor behavior. Moreover, while Ib- and II-PN subtypes are specified around birth, Ia-PN subtypes diversify later in life along with increased motor activity. We also show Ia-PNs plasticity following exercise training, suggesting Ia-PNs are important players in adaptive proprioceptive function in adult mice.


Assuntos
Retroalimentação Sensorial/fisiologia , Gânglios Espinais/metabolismo , Neurônios Motores/metabolismo , Propriocepção/fisiologia , Células Receptoras Sensoriais/metabolismo , Animais , Calbindina 1/genética , Calbindina 1/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Gânglios Espinais/citologia , Expressão Gênica , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/classificação , Neurônios Motores/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Condicionamento Físico Animal , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/citologia , Análise de Célula Única , Medula Espinal/citologia , Medula Espinal/metabolismo
13.
Front Neurosci ; 14: 868, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982668

RESUMO

The perception of speed is influenced by visual contrast. In primary visual cortex (V1), an early stage in the visual perception pathway, the neural tuning to speed is directly related to the neural tuning to temporal frequency of stimulus changes. The influence of contrast on speed perception can be caused by the joint dependency of neural responses in V1 on temporal frequency and contrast. Here, we investigated how tuning to contrast and temporal frequency in V1 of anesthetized mice are related. We found that temporal frequency tuning is contrast-dependent. V1 was more responsive at lower temporal frequencies than the dLGN, consistent with previous work at high contrast. The temporal frequency tuning moves toward higher temporal frequencies with increasing contrast. The low half-maximum temporal frequency does not change with contrast. The Heeger divisive normalization equation provides a good fit to many response characteristics in V1, but does not fit the dependency of temporal frequency and contrast with set of parameters for all temporal frequencies. Different mechanisms for normalization in the visual cortex may predict different relationships between temporal frequency and contrast non-linearity. Our data could help to make a model selection.

14.
J Neurosci ; 40(28): 5495-5509, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32527982

RESUMO

Neurofibromatosis type 1 (NF1) is a common monogenic neurodevelopmental disorder associated with physical and cognitive problems. The cognitive issues are thought to arise from increased release of the neurotransmitter GABA. Modulating the signaling pathways causing increased GABA release in a mouse model of NF1 reverts deficits in hippocampal learning. However, clinical trials based on these approaches have so far been unsuccessful. We therefore used a combination of slice electrophysiology, in vivo two-photon calcium imaging, and optical imaging of intrinsic signal in a mouse model of NF1 to investigate whether cortical development is affected in NF1, possibly causing lifelong consequences that cannot be rescued by reducing inhibition later in life. We find that, in NF1 mice of both sexes, inhibition increases strongly during the development of the visual cortex and remains high. While this increase in cortical inhibition does not affect spontaneous cortical activity patterns during early cortical development, the critical period for ocular dominance plasticity is shortened in NF1 mice due to its early closure but unaltered onset. Notably, after environmental enrichment, differences in inhibitory innervation and ocular dominance plasticity between NF1 mice and WT littermates disappear. These results provide the first evidence for critical period dysregulation in NF1 and suggest that treatments aimed at normalizing levels of inhibition will need to start at early stages of development.SIGNIFICANCE STATEMENT Neurofibromatosis type 1 is associated with cognitive problems for which no treatment is currently available. This study shows that, in a mouse model of neurofibromatosis type 1, cortical inhibition is increased during development and critical period regulation is disturbed. Rearing the mice in an environment that stimulates cognitive function overcomes these deficits. These results uncover critical period dysregulation as a novel mechanism in the pathogenesis of neurofibromatosis type 1. This suggests that targeting the affected signaling pathways in neurofibromatosis type 1 for the treatment of cognitive disabilities may have to start at a much younger age than has so far been tested in clinical trials.


Assuntos
Córtex Cerebral/fisiopatologia , Neurofibromatose 1/fisiopatologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Período Crítico Psicológico , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Imagem Óptica , Córtex Visual/fisiopatologia
15.
Curr Biol ; 29(24): 4268-4275.e7, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31786063

RESUMO

Neuronal response to sensory stimuli depends on the context. The response in primary visual cortex (V1), for instance, is reduced when a stimulus is surrounded by a similar stimulus [1-3]. The source of this surround suppression is partially known. In mouse, local horizontal integration by somatostatin-expressing interneurons contributes to surround suppression [4]. In primates, however, surround suppression arises too quickly to come from local horizontal integration alone, and myelinated axons from higher visual areas, where cells have larger receptive fields, are thought to provide additional surround suppression [5, 6]. Silencing higher visual areas indeed decreased surround suppression in the awake primate by increasing responses to large stimuli [7, 8], although not under anesthesia [9, 10]. In smaller mammals, like mice, fast surround suppression could be possible without feedback. Recent studies revealed a small reduction in V1 responses when silencing higher areas [11, 12] but have not investigated surround suppression. To determine whether higher visual areas contribute to V1 surround suppression, even when this is not necessary for fast processing, we inhibited the areas lateral to V1, particularly the lateromedial area (LM), a possible homolog of primate V2 [13], while recording in V1 of awake and anesthetized mice. We found that part of the surround suppression depends on activity from lateral visual areas in the awake, but not anesthetized, mouse. Inhibiting the lateral visual areas specifically increased responses in V1 to large stimuli. We present a model explaining how excitatory feedback to V1 can have these suppressive effects for large stimuli.


Assuntos
Inibição Neural/fisiologia , Córtex Visual/metabolismo , Vigília/fisiologia , Animais , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Orientação/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Campos Visuais , Vias Visuais/fisiologia , Percepção Visual/fisiologia
16.
Brain Stimul ; 12(6): 1421-1428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31331791

RESUMO

BACKGROUND: Transcranial electrical stimulation (tES) is a popular method to modulate brain activity by sending a weak electric current through the head. Despite its popularity, long-term effects are poorly understood. OBJECTIVE: We wanted to test if anodal tES immediately changes cerebral responses to visual stimuli, and if repeated sessions of tES produce plasticity in these responses. METHODS: We applied repeated anodal tES, like transcranial direct current stimulation (tDCS), but pulsed (8 s on, 10 s off), to the visual cortex of mice while visually presenting gratings. We measured the responses to these visual stimuli in the visual cortex using the genetically encoded calcium indicator GCaMP3. RESULTS: We found an increase in the visual response when concurrently applying tES on the bone without skin (epicranially). This increase was only transient when tES was applied through the skin (transcutaneous). There was no immediate after-effect of tES. However, repeated transcutaneous tES for four sessions at two-day intervals increased the visual response in the visual cortex. This increase was not specific to the grating stimulus coupled to tES and also occurred for an orthogonal grating presented in the same sessions but without concurrent tES. No increase was found in mice that received no tES. CONCLUSION: Our study provides evidence that tES induces long-term changes in the mouse brain. Results in mice do not directly translate to humans, because of differences in stimulation protocols and the way current translates to electric field strength in vastly different heads.


Assuntos
Estimulação Luminosa/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Distribuição Aleatória , Fatores de Tempo
17.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30671537

RESUMO

Many brain regions go through critical periods of development during which plasticity is enhanced. These critical periods are associated with extensive growth and retraction of thalamocortical and intracortical axons. Here, we investigated whether a signaling pathway that is central in Wallerian axon degeneration also regulates critical period plasticity in the primary visual cortex (V1). Wallerian degeneration is characterized by rapid disintegration of axons once they are separated from the cell body. This degenerative process is initiated by reduced presence of cytoplasmic nicotinamide mononucleotide adenylyltransferases (NMNATs) and is strongly delayed in mice overexpressing cytoplasmic NMNAT proteins, such as WldS mutant mice producing a UBE4b-NMNAT1 fusion protein or NMNAT3 transgenic mice. Here, we provide evidence that in WldS mice and NMNAT3 transgenic mice, ocular dominance (OD) plasticity in the developing visual cortex is reduced. This deficit is only observed during the second half of the critical period. Additionally, we detect an early increase of visual acuity in the V1 of WldS mice. We do not find evidence for Wallerian degeneration occurring during OD plasticity. Our findings suggest that NMNATs do not only regulate Wallerian degeneration during pathological conditions but also control cellular events that mediate critical period plasticity during the physiological development of the cortex.


Assuntos
Plasticidade Neuronal/fisiologia , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/metabolismo , Degeneração Walleriana/metabolismo , Animais , Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Sinapses/metabolismo , Técnicas de Cultura de Tecidos , Acuidade Visual/fisiologia
18.
Nat Commun ; 9(1): 3895, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254324

RESUMO

The largest targets of retinal input in mammals are the dorsal lateral geniculate nucleus (dLGN), a relay to the primary visual cortex (V1), and the superior colliculus. V1 innervates and influences the superior colliculus. Here, we find that, in turn, superior colliculus modulates responses in mouse V1. Optogenetically inhibiting the superior colliculus reduces responses in V1 to optimally sized stimuli. Superior colliculus could influence V1 via its strong projection to the lateral posterior nucleus (LP/Pulvinar) or its weaker projection to the dLGN. Inhibiting superior colliculus strongly reduces activity in LP. Pharmacologically silencing LP itself, however, does not remove collicular modulation of V1. The modulation is instead due to a collicular gain modulation of the dLGN. Surround suppression operating in V1 explains the different effects for differently sized stimuli. Computations of visual saliency in the superior colliculus can thus influence tuning in the visual cortex via a tectogeniculate pathway.


Assuntos
Corpos Geniculados/fisiologia , Pulvinar/fisiologia , Colículos Superiores/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Muscimol/farmacologia , Optogenética , Estimulação Luminosa , Vias Visuais/efeitos dos fármacos , Vias Visuais/fisiologia
19.
Sci Rep ; 8(1): 12355, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120412

RESUMO

Inhibition in the cerebral cortex is delivered by a variety of GABAergic interneurons. These cells have been categorized by their morphology, physiology, gene expression and connectivity. Many of these classes appear to be conserved across species, suggesting that the classes play specific functional roles in cortical processing. What these functions are, is still largely unknown. The largest group of interneurons in the upper layers of mouse primary visual cortex (V1) is formed by cells expressing the calcium-binding protein calretinin (CR). This heterogeneous class contains subsets of vasoactive intestinal polypeptide (VIP) interneurons and somatostatin (SOM) interneurons. Here we show, using in vivo two-photon calcium imaging in mice, that CR neurons can be sensitive to stimulus orientation, but that they are less selective on average than the overall neuronal population. Responses of CR neurons are suppressed by a surrounding stimulus, but less so than the overall population. In rats and primates, CR interneurons have been suggested to provide disinhibition, but we found that in mice their in vivo activation by optogenetics causes a net inhibition of cortical activity. Our results show that the average functional properties of CR interneurons are distinct from the averages of the parvalbumin, SOM and VIP interneuron populations.


Assuntos
Calbindina 2/metabolismo , Córtex Visual/citologia , Córtex Visual/metabolismo , Animais , Eletrofisiologia , Imuno-Histoquímica , Interneurônios/citologia , Interneurônios/metabolismo , Camundongos , Ratos , Somatostatina/metabolismo , Análise Espaço-Temporal , Peptídeo Intestinal Vasoativo/metabolismo
20.
Cereb Cortex ; 28(4): 1183-1194, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28184425

RESUMO

The formation, plasticity and maintenance of synaptic connections is regulated by molecular and electrical signals. ß-Catenin is an important protein in these events and regulates cadherin-mediated cell adhesion and the recruitment of pre- and postsynaptic proteins in an activity-dependent fashion. Mutations in the ß-catenin gene can cause cognitive disability and autism, with life-long consequences. Understanding its synaptic function may thus be relevant for the treatment of these disorders. So far, ß-catenin's function has been studied predominantly in cell culture and during development but knowledge on its function in adulthood is limited. Here, we show that ablating ß-catenin in excitatory neurons of the adult visual cortex does not cause the same synaptic deficits previously observed during development. Instead, it reduces NMDA-receptor currents and impairs visual processing. We conclude that ß-catenin remains important for adult cortical function but through different mechanisms than during development.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Visual/metabolismo , beta Catenina/metabolismo , 2-Amino-5-fosfonovalerato/análogos & derivados , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/metabolismo , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Privação Sensorial , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética , Córtex Visual/efeitos dos fármacos , Substância Branca/efeitos dos fármacos , Substância Branca/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...