Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982763

RESUMO

Scattering and localization dynamics of charge carriers in the soft lattice of lead-halide perovskites impact polaron formation and recombination, which are key mechanisms of material function in optoelectronic devices. In this study, we probe the photoinduced lattice and carrier dynamics in perovskite thin films (CsFAPbX3, X = I, Br) using time-resolved infrared spectroscopy. We examine the CN stretching mode of formamidinium (FA) cations located within the lead-halide octahedra of the perovskite structure. Our investigation reveals the formation of an infrared mode due to spatial symmetry breaking within a hundred picoseconds in 3D perovskites. Experiments at cryogenic temperatures show much-reduced carrier localization, in agreement with a localization mechanism that is driven by the dynamic disorder. We extend our analysis to 2D perovskites, where the precise nature of charge carriers is uncertain. Remarkably, the signatures of charge localization we found in bulk perovskites are not observed for 2D Ruddlesden-Popper perovskites ((HexA)2FAPb2I7). This observation implies that the previously reported stabilization of free charge carriers in these materials follows different mechanisms than polaron formation in bulk perovskites. Through the exploration of heterostructures with electron/hole excess, we provide evidence that holes drive the formation of the emerging infrared mode.

2.
J Phys Chem Lett ; 15(10): 2851-2858, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38442903

RESUMO

Spin-orbit coupling in the electronic states of solution-processed hybrid metal halide perovskites forms complex spin-textures in the band structures and allows for optical manipulation of the excited state spin-polarizations. Here, we report that motional narrowing acts on the photoexcited spin-polarization in CH3NH3PbBr3 thin films, which are doped at percentage-level with Mn2+ ions. Using ultrafast circularly polarized broadband transient absorption spectroscopy at cryogenic temperatures, we investigate the spin population dynamics in these doped hybrid perovskites and find that spin relaxation lifetimes are increased by a factor of 3 compared to those of undoped materials. Using quantitative analysis of the photoexcitation cooling processes, we reveal increased carrier scattering rates in the doped perovskites as the fundamental mechanism driving spin-polarization-maintaining motional narrowing. Our work reports transition-metal doping as a concept to extend spin lifetimes of hybrid perovskites.

3.
Sci Adv ; 9(35): eadh5083, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656792

RESUMO

Hybrid perovskite semiconductor materials are predicted to lock chirality into place and encode asymmetry into their electronic states, while softness of their crystal lattice accommodates lattice strain to maintain high crystal quality with low defect densities, necessary for high luminescence yields. We report photoluminescence quantum efficiencies as high as 39% and degrees of circularly polarized photoluminescence of up to 52%, at room temperature, in the chiral layered hybrid lead-halide perovskites (R/S/Rac)-3BrMBA2PbI4 [3BrMBA = 1-(3-bromphenyl)-ethylamine]. Using transient chiroptical spectroscopy, we explain the excellent photoluminescence yields from suppression of nonradiative loss channels and high rates of radiative recombination. We further find that photoexcitations show polarization lifetimes that exceed the time scales of radiative decays, which rationalize the high degrees of polarized luminescence. Our findings pave the way toward high-performance solution-processed photonic systems for chiroptical applications and chiral-spintronic logic at room temperature.

4.
ACS Nano ; 17(11): 10423-10430, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37220255

RESUMO

Antiferromagnets are promising materials for future opto-spintronic applications since they show spin dynamics in the THz range and no net magnetization. Recently, layered van der Waals (vdW) antiferromagnets have been reported, which combine low-dimensional excitonic properties with complex spin-structure. While various methods for the fabrication of vdW 2D crystals exist, formation of large area and continuous thin films is challenging because of either limited scalability, synthetic complexity, or low opto-spintronic quality of the final material. Here, we fabricate centimeter-scale thin films of the van der Waals 2D antiferromagnetic material NiPS3, which we prepare using a crystal ink made from liquid phase exfoliation (LPE). We perform statistical atomic force microscopy (AFM) and scanning electron microscopy (SEM) to characterize and control the lateral size and number of layers through this ink-based fabrication. Using ultrafast optical spectroscopy at cryogenic temperatures, we resolve the dynamics of photoexcited excitons. We find antiferromagnetic spin arrangement and spin-entangled Zhang-Rice multiplet excitons with lifetimes in the nanosecond range, as well as ultranarrow emission line widths, despite the disordered nature of our films. Thus, our findings demonstrate scalable thin-film fabrication of high-quality NiPS3, which is crucial for translating this 2D antiferromagnetic material into spintronic and nanoscale memory devices and further exploring its complex spin-light coupled states.

5.
J Am Chem Soc ; 144(31): 14079-14089, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895312

RESUMO

Hybrid organic-inorganic networks that incorporate chiral molecules have attracted great attention due to their potential in semiconductor lighting applications and optical communication. Here, we introduce a chiral organic molecule (R)/(S)-1-cyclohexylethylamine (CHEA) into bismuth-based lead-free structures with an edge-sharing octahedral motif, to synthesize chiral lead-free (R)/(S)-CHEA4Bi2BrxI10-x crystals and thin films. Using single-crystal X-ray diffraction measurements and density functional theory calculations, we identify crystal and electronic band structures. We investigate the materials' optical properties and find circular dichroism, which we tune by the bromide-iodide ratio over a wide wavelength range, from 300 to 500 nm. We further employ transient absorption spectroscopy and time-correlated single photon counting to investigate charge carrier dynamics, which show long-lived excitations with optically induced chirality memory up to tens of nanosecond timescales. Our demonstration of chirality memory in a color-tunable chiral lead-free semiconductor opens a new avenue for the discovery of high-performance, lead-free spintronic materials with chiroptical functionalities.

6.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082146

RESUMO

NMR is a noninvasive, molecular-level spectroscopic technique widely used for chemical characterization. However, it lacks the sensitivity to probe the small number of spins at surfaces and interfaces. Here, we use nitrogen vacancy (NV) centers in diamond as quantum sensors to optically detect NMR signals from chemically modified thin films. To demonstrate the method's capabilities, aluminum oxide layers, common supports in catalysis and materials science, are prepared by atomic layer deposition and are subsequently functionalized by phosphonate chemistry to form self-assembled monolayers. The surface NV-NMR technique detects spatially resolved NMR signals from the monolayer, indicates chemical binding, and quantifies molecular coverage. In addition, it can monitor in real time the formation kinetics at the solid-liquid interface. With our approach, we show that NV quantum sensors are a surface-sensitive NMR tool with femtomole sensitivity for in situ analysis in catalysis, materials, and biological research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...