Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(6): 5292-5299, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187344

RESUMO

The fortification of animal feed with enzymes in order to optimize feed utilization has become a standard for the meat production industry. A method for measuring levels of active enzymes that can be carried out quickly would ensure that feed has been supplemented with the appropriate amount of enzyme. Phytase is the most widely used feed enzyme and is routinely quantified with an activity assay in a limited number of specialized laboratories. As an alternative, we report here the development of a rapid and easy method to perform a quantitative assay for the phytase from Citrobacter braakii. The method is suitable for use at local sites with a minimum lab setup and will reduce delays and potential interferences due to improper sample storage and shipment. The new assay is based on a lateral flow immunoassay that utilizes magnetic immune-chromatographic test (MICT) technology to quantify the phytase content of a feed extract. After extraction of the phytase from the feed, the sample is simply diluted and added to a reaction tube containing a specific anti-phytase antibody coupled to superparamagnetic particles. The mixture is then applied on an assay cassette, where the formed particle-antibody-phytase complexes are captured by immobilized antibodies on a nitro-cellulose strip housed in a cassette. The cassette is placed in the MICT reader that measures the magnetic signal of the captured particles. Using the calibration information stored in the cassette barcode, the signal is converted to a phytase concentration, given as phytase activity (FYT) per kilogram of feed. The accuracy and robustness of the assay compared to the ISO phytase activity assay were demonstrated through a large validation study including real feed samples from different compositions and origins. The MICT assay is the first quantitative assay for feed enzymes that is fast, reliable, and simple to use outside of a specialized reference laboratory and that is suitable for use in place of the current ISO assay.

2.
Biotechnol Biofuels ; 8: 62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25870654

RESUMO

BACKGROUND: Solid bio-wastes (or organic residues) are worldwide produced in high amount and increasingly considered bioenergy containers rather than waste products. A complete bioprocess from recalcitrant solid wastes to methane (SW2M) via anaerobic digestion (AD) is believed to be a sustainable way to utilize solid bio-wastes. However, the complex and recalcitrance of these organic solids make the hydrolysis process inefficient and thus a rate-limiting step to many AD technologies. Effort has been made to enhance the hydrolysis efficiency, but a comprehensive assessment over a complete flow scheme of SW2M is rare. RESULTS: In this study, it comes to reality of a complete scheme for SW2M. A novel process to efficiently convert organic residues into methane is proposed, which proved to be more favorable compared to conventional methods. Brewers' spent grain (BSG) and pig manure (PM) were used to test the feasibility and efficiency. BSG and PM were enzymatically pre-hydrolyzed and solubilized, after which the hydrolysates were anaerobically digested using different bioreactor designs, including expanded granular sludge bed (EGSB), continuously stirred tank reactor (CSTR), and sequencing batch reactor (SBR). High organic loading rates (OLRs), reaching 19 and 21 kgCOD · m(-3) · day(-1) were achieved for the EGSBs, fed with BSG and PM, respectively, which were five to seven times higher than those obtained with direct digestion of the raw materials via CSTR or SBR. About 56% and 45% organic proportion of the BSG and PM can be eventually converted to methane. CONCLUSIONS: This study proves that complex organic solids, such as cellulose, hemicellulose, proteins, and lipids can be efficiently hydrolyzed, yielding easy biodegradable/bio-convertible influents for the subsequent anaerobic digestion step. Although the economical advantage might not be clear, the current approach represents an efficient way for industrial-scale treatment of organic residues with a small footprint and fast conversion of AD.

3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 791(1-2): 345-56, 2003 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-12798194

RESUMO

Hemoglobin is a known source of biologically active peptides with various functions. In the present study, we report for the first time the existence of natural processed hemoglobin fragments exhibiting antimicrobial activity in humans. Two antimicrobial hemoglobin-derived peptides were purified from a human placental peptide library by consecutive chromatographic steps tracking the maximum growth inhibitory activity against Escherichia coli BL21. These peptides, consisting of 17 and 36 amino acid residues, were identified as being C-terminal fragments of gamma-hemoglobin and beta-hemoglobin, respectively. The antimicrobial beta-hemoglobin fragment was also purified from lysed erythrocytes, demonstrating that proteolytic degradation of hemoglobin into small bioactive peptides already starts inside erythrocytes. The identified peptides inhibit the growth of Gram-positive and Gram-negative bacteria and yeasts in micromolar concentrations. Moreover, by LPS-binding, the beta-hemoglobin fragment reduces biological activity of endotoxins. In contrast, even at high concentrations, the identified antimicrobial hemoglobin peptides do not exhibit toxic activity on human primary blood cells. We conclude that antimicrobial hemoglobin-derived peptides could be important effectors of the innate immune response killing microbial invaders.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Hemoglobinas/química , Peptídeos/farmacologia , Antibacterianos/química , Antifúngicos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...