Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Electrochem Soc ; 169(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35755409

RESUMO

In this work, we demonstrate accurate and precise measurement of manganese (Mn) concentration in human whole blood with indium tin oxide (ITO) electrode using square wave stripping voltammetry. While an essential trace metal for human health, elevated levels of Mn due to environmental or occupational exposure have been associated with severe neuromotor dysfunction characterized by parkinsonism and cognitive dysfunction making the monitoring of Mn in whole blood necessary. Pediatric populations are particularly susceptible to Mn given their developing brain and potential long-term impacts on neurodevelopment. The current gold standard for whole blood Mn measurements is by ICP-MS, which is costly and time consuming. The electrochemical detection with ITO working electrode in this work showed a limit of detection of 0.5 µg l-1 and a linear range of 5 to 500 µg l-1, which encompasses the physiological Mn levels in human whole blood (5-18 µg l-1). Our results of Mn measurement in whole blood show an average precision of 96.5% and an average accuracy of 90.3% compared to ICP-MS for both the normal range (5-18 µg l-1) and the elevated levels (>36 µg l-1) that require medical intervention. These results demonstrate the feasibility of Mn measurements in human blood with electrochemical sensors.

2.
Anal Chem ; 93(30): 10487-10494, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279086

RESUMO

Alternative metals such as magnesium (Mg) and its alloys have been recently developed for clinical applications such as temporary implants for bone and tissue repair due to their desirable mechanical properties and ability to biodegrade harmlessly in vivo by releasing Mg2+, OH-, and H2 as biodegradation products. The current methods for monitoring in vivo Mg-alloy biodegradation are either invasive and/or costly, complex, or require large equipment and specially trained personnel, thus making real-time and point-of-care monitoring of Mg-alloy implants problematic. Therefore, innovative methods are critically needed. The objective of this research was to develop a novel, thin, and wearable visual H2 sensor prototype for noninvasive monitoring of in vivo Mg-implant biodegradation in medical research and clinical settings with a fast response time. In this work, we successfully demonstrate such a prototype composed of resazurin and catalytic bimetallic gold-palladium nanoparticles (Au-Pd NPs) incorporated into a thin agarose/alginate hydrogel matrix that rapidly changes color from blue to pink upon exposure to various levels of H2 at a constant flow rate. The irreversible redox reactions occurring in the sensor involve H2, in the presence of Au-Pd NPs, converting resazurin to resorufin. To quantify the sensor color changes, ImageJ software was used to analyze photographs of the sensor taken with a smartphone during H2 exposure. The sensor concentration range was from pure H2 down to limits of detection of 6 and 8 µM H2 (defined via two methods). This range is adequate for the intended application of noninvasively monitoring in vivo Mg-alloy implant biodegradation in animals for medical research and patients in clinical settings.


Assuntos
Magnésio , Nanopartículas Metálicas , Ligas , Animais , Humanos , Hidrogênio , Paládio
3.
Annu Rev Anal Chem (Palo Alto Calif) ; 14(1): 109-131, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34314225

RESUMO

The advent of electrochemical affinity assays and sensors evolved from pioneering efforts in the 1970s to broaden the field of analytes accessible to the selective and sensitive performance of electrochemical detection. The foundation of electrochemical affinity assays/sensors is the specific capture of an analyte by an affinity element and the subsequent transduction of this event into a measurable signal. This review briefly covers the early development of affinity assays and then focuses on advances in the past decade. During this time, progress on electroactive labels, including the use of nanoparticles, quantum dots, organic and organometallic redox compounds, and enzymes with amplification schemes, has led to significant improvements in sensitivity. The emergence of nanomaterials along with microfabrication and microfluidics technology enabled research pathways that couple the ease of use of electrochemical detection for the development of devices that are more user friendly, disposable, and employable, such as lab-on-a-chip, paper, and wearable sensors.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Nanoestruturas , Pontos Quânticos , Técnicas Eletroquímicas , Microfluídica
4.
Anal Chim Acta ; 1155: 338353, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33766313

RESUMO

Heavy metal contamination of drinking water is a major global issue. Research reports across the globe show contamination of heavy metals higher than the set standards of the World Health Organization (WHO) and US Environmental Protection Agency (EPA). To our knowledge, no electrochemical sensor for heavy metals with parts per trillion (PPT) limits of detection (LOD) in as-is tap water has been reported or developed. Here, we report a microelectrode that consists of six highly densified carbon nanotube fiber (HD-CNTf) cross sections called rods (diameter ∼69 µm and length ∼40 µm) in a single platform for the ultra-sensitive detection of heavy metals in tap water and simulated drinking water. The HD-CNTf rods microelectrode was evaluated for the individual and simultaneous determination of trace level of heavy metal ions i.e. Cu2+, Pb2+ and Cd2+ in Cincinnati tap water (without supporting electrolyte) and simulated drinking water using square wave stripping voltammetry (SWSV). The microsensor exhibited a broad linear detection range with an excellent limit of detection for individual Cu2+, Pb2+ and Cd2+ of 6.0 nM, (376 ppt), 0.45 nM (92 ppt) and 0.24 nM (27 ppt) in tap water and 0.32 nM (20 ppt), 0.26 nM (55 ppt) and 0.25 nM (28 ppt) in simulated drinking water, respectively. The microelectrode was shown to detect Pb2+ ions well below the WHO and EPA limits in a broad range of water quality conditions reported for temperature and conductivity in the range of 5 °C-45 °C and 55 to 600 µS/cm, respectively.


Assuntos
Água Potável , Metais Pesados , Nanotubos de Carbono , Água Potável/análise , Limite de Detecção , Metais Pesados/análise , Microeletrodos
5.
Anal Chem ; 93(2): 812-819, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33395261

RESUMO

Electrochemical impedance spectroscopy (EIS), an extremely sensitive analytical technique, is a widely used signal transduction method for the electrochemical detection of target analytes in a broad range of applications. The use of nucleic acids (aptamers) for sequence-specific or molecular detection in electrochemical biosensor development has been extensive, and the field continues to grow. Although nucleic acid-based sensors using EIS offer exceptional sensitivity, signal fidelity is often linked to the physical and chemical properties of the electrode-solution interface. Little emphasis has been placed on the stability of nucleic acid self-assembled monolayers (SAMs) over repeated voltammetric and impedimetric analyses. We have studied the stability and performance of electrochemical biosensors with mixed SAMs of varying length thiolated nucleic acids and short mercapto alcohols on gold surfaces under repeated electrochemical interrogation. This systematic study demonstrates that signal fidelity is linked to the stability of the SAM layer and nucleic acid structure and the packing density of the nucleic acid on the surface. A decrease in packing density and structural changes of nucleic acids significantly influence the signal change observed with EIS after routine voltammetric analysis. The goal of this article is to improve our understanding of the effect of multiple factors on EIS signal response and to optimize the experimental conditions for development of sensitive and reproducible sensors. Our data demonstrate a need for rigorous control experiments to ensure that the measured change in impedance is unequivocally a result of a specific interaction between the target analyte and nucleic recognition element.


Assuntos
Impedância Elétrica , Ácidos Nucleicos/química , Aptâmeros de Nucleotídeos/química , DNA , Espectroscopia Dielétrica/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Transdução de Sinais
7.
ACS ES T Eng ; 1(11)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34988551

RESUMO

In this study, we demonstrate the successful development of an electrochemical aptamer-based sensor for point-of-use detection and quantification of the highly potent microcystin-LR (MC-LR) in water. The sensor uses hexaammineruthenium(III) chloride ([Ru(NH3)6]3+) as redox mediator, because of the ability of the positively charged (3+) molecule to associate with the phosphate backbone of the nucleic acids. We quantitatively measure the target-induced displacement of aptamer associated, or surface confined, [Ru(NH3)6]3+ in the presence of MC-LR. Upon the addition of MC-LR in the water, surface-confined [Ru(NH3)6]3+ dissociates, resulting in less faradaic current from the reduction of [Ru(NH3)6]3+ to [Ru(NH3)6]2+ Sensing surfaces of highly packed immobilized aptamers were capable of recording decreasing square wave voltammetry (SWV) signals after the addition of MC-LR in buffer. As a result, SWV recorded substantial signal suppression within 15 min of target incubation. The sensor showed a calculated limit of detection (LOD) of 9.2 pM in buffer. The effects of interferents were minimal, except when high concentrations of natural organic matter (NOM) were present. Also, the sensor performed well in drinking water samples. These results indicate a sensor with potential for fast and specific quantitative determination of MC-LR in drinking water samples. A common challenge when developing electrochemical, aptamer-based sensors is the need to optimize the nucleic acid aptamer in order to achieve sensitive signaling. This is particularly important when an aptamer experiences only a small or localized conformational change that provides only a limited electrochemical signal change. This study suggests a strategy to overcome that challenge through the use of a nucleic acid-associated redox label.

8.
Anal Chem ; 92(15): 10651-10658, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32628465

RESUMO

Using ultraviolet-visible (UV-vis) absorption spectroscopy, we have tested the reactivity of various indicator molecules combined with catalytic bimetallic gold-palladium nanoparticles (Au-Pd NPs) in solution for an irreversible and visual response to H2. Our aim was to identify the most suitable indicator/Au-Pd NP system for the future development of a thin, wearable, and visual H2 sensor for noninvasive monitoring of in vivo Mg-implant biodegradation in research and clinical settings with fast response time. The indicators studied were bromothymol blue, methyl red, and resazurin, and the reactions of each system with H2 in the presence of Au-Pd NPs caused visual and irreversible color changes that were concluded to proceed via redox processes. The resazurin/Au-Pd NP system was deemed best-suited for our research objectives because (1) this system had the fastest color change response to H2 at levels relevant to in vivo Mg-implant biodegradation compared to the other indicator/Au-Pd NP systems tested, (2) the observed redox chemistry with H2 followed well-understood reaction pathways reported in the literature, and (3) the redox products were nontoxic and appropriate for medical applications. Studying the effects of the concentrations of H2, Au-Pd NPs, and resazurin on the color change response time within the resazurin/Au-Pd NP system revealed that the H2-sensing elements can be optimized to achieve a faster or slower color change with H2 by varying the relative amounts of resazurin and Au-Pd NPs in solution. The results from this study are significant for future optical H2 sensor design.

9.
ACS Biomater Sci Eng ; 6(4): 1950-1964, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33455316

RESUMO

Magnesium alloys are the most widely studied biodegradable metals for biodegradable vascular stent application. Two major issues with current magnesium alloy based stents are their low ductility and fast corrosion rates. Several studies have validated that introduction of Li into the magnesium alloys will significantly improve the ductility while alloying with Al will improve the corrosion resistance and strength. In the present study, we studied the effects of alloying different amounts of Li and Al on the Mg-Li-Al-Zn (LAZ) quaternary alloy system. Rods were made from four different LAZ alloys, namely, LAZ611, LAZ631, LAZ911, and LAZ931 following melting, casting, and then extrusion. Systematic assessment of mechanical properties, in vitro corrosion, cytotoxicity, and in vivo degradation including local and systemic toxicity conducted demonstrated the beneficial effects of Li and Al on the mechanical properties. Our results specifically suggest that alloying with Li significantly improved the ductility while Al enhanced the strength of the LAZ alloys. Four of the LAZ alloys exhibited different corrosion rates in Hank's balanced salt solution depending on the chemical composition. Indirect in vitro cytotoxicity tests also showed lower cytotoxicity for the alloys exhibiting higher corrosion resistance. In vivo corrosion rates in the mouse subcutaneous model showed different corrosion rates compared to the in vitro tests. Nevertheless, all of the four LAZ alloys displayed no local and systemic toxicity based on the histology analysis. This research study, therefore, demonstrated the benefits of using Li and Al as alloying elements in LAZ alloys and the potential use of LAZ alloys for vascular stent application.


Assuntos
Alumínio , Lítio , Ligas/toxicidade , Alumínio/toxicidade , Animais , Materiais Biocompatíveis/toxicidade , Teste de Materiais , Camundongos , Stents , Zinco/toxicidade
10.
Sci Rep ; 9(1): 14228, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578397

RESUMO

The presence of bacterial pathogens in water can lead to severe complications such as infection and food poisoning. This research proposes a point-of-care electroosmotic flow driven microfluidic device for rapid isolation and detection of E. coli in buffered solution (phosphate buffered saline solution). Fluorescent E. coli bound to magnetic microbeads were driven through the microfluidic device using both constant forward flow and periodic flow switching at concentrations ranging from 2 × 105 to 4 × 107 bacteria/mL. A calibration curve of fluorescent intensity as a function of bacteria concentration was created using both constant and switching flow, showing an increase in captured fluorescent pixel count as concentration increases. In addition, the use of the flow switching resulted in a significant increase in the capture efficiency of E. coli, with capture efficiencies up to 83% ± 8% as compared to the constant flow capture efficiencies (up to 39% ± 11%), with a sample size of 3 µL. These results demonstrate the improved performance associated with the use of the electroosmotic flow switching system in a point-of-care bacterial detection assay.


Assuntos
Técnicas Bacteriológicas/métodos , Eletro-Osmose , Escherichia coli/isolamento & purificação , Dispositivos Lab-On-A-Chip , Microesferas , Técnicas Bacteriológicas/instrumentação , Calibragem , Desenho de Equipamento , Fluoresceínas/química , Corantes Fluorescentes/análise , Fluorometria/instrumentação , Fluorometria/métodos , Ácidos Sulfônicos/química
11.
ACS Sens ; 4(5): 1151-1173, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31056912

RESUMO

Cyanobacteria harmful algal blooms are increasing in frequency and cyanotoxins have become an environmental and public concern in the U.S. and worldwide. In this Review, the majority of reported studies and developments of electrochemical affinity biosensors for cyanotoxins are critically reviewed and discussed. Essential background information about cyanobacterial toxins and electrochemical biosensors is combined with the rapidly moving development of electrochemical biosensors for these toxins. Current issues and future challenges for the development of useful electrochemical biosensors for cyanotoxin detection that meet the demands for applications in field freshwater samples are discussed. The major aspects of the entire review article in a prescribed sequence include (i) the state-of-the-art knowledge of the toxicity of cyanotoxins, (ii) important harmful algal bloom events, (iii) advisories, guidelines, and regulations, (iv) conventional analytical methods for determination of cyanotoxins, (v) electrochemical transduction, (vi) recognition receptors, (vii) reported electrochemical biosensors for cyanotoxins, (viii) summary of analytical performance, and (ix) recent advances and future trends. Discussion includes electrochemical techniques and devices, biomolecules with high affinity, numerous array designs, various detection approaches, and research strategies in tailoring the properties of the transducer-biomolecule interface. Scientific and engineering aspects are presented in depth. This review aims to serve as a valuable source to scientists and engineers entering the interdisciplinary field of electrochemical biosensors for detection of cyanotoxins in freshwaters.


Assuntos
Técnicas Biossensoriais/métodos , Cianobactérias/metabolismo , Água Doce/química , Toxinas Biológicas/análise , Animais , Eletroquímica , Toxinas Biológicas/biossíntese
12.
Environ Sci Technol ; 52(14): 7796-7804, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29895141

RESUMO

The quantitative conversion of nonpertechnetate [Tc(CO)3]+ species in nuclear waste storage tank 241-AN-102 at the Hanford Site is demonstrated. A waste sample containing the [Tc(CO)3]+ species is added to a developer solution that rapidly converts the nonemissive species into a luminescent complex, which is detected spectroscopically. This method was first demonstrated using a [Tc(CO)3]+ sample of nonwaste containing matrix to determine a detection limit (LOD), resulting in a [Tc(CO)3]+ LOD of 2.20 × 10-7 M, very near the LOD of the independently synthesized standard (2.10 × 10-7 M). The method was then used to detect [Tc(CO)3]+ in a simulated waste using the standard addition method, resulting in a [Tc(CO)3]+ concentration of 1.89 × 10-5 M (within 27.7% of the concentration determined by ß liquid scintillation counting). Three samples from 241-AN-102 were tested by the standard addition method: (1) a 5 M Na adjusted fraction, (2) a fraction depleted of 137Cs, and (3) an acid-stripped eluate. The concentrations of [Tc(CO)3]+ in these fractions were determined to be 9.90 × 10-6 M (1), 0 M (2), and 2.46 × 10-6 M (3), respectively. The concentration of [Tc(CO)3]+ in the as-received AN-102 tank waste supernatant was determined to be 1.84 × 10-5 M.


Assuntos
Resíduos Radioativos , Animais , Suínos
13.
Acta Biomater ; 73: 559-566, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29684620

RESUMO

Magnesium (Mg) medical devices are currently being marketed for orthopedic applications and have a complex degradation process which includes the evolution of hydrogen gas (H2). The effect of H2 exposure on relevant cell types has not been studied; and the concentration surrounding degrading Mg devices has not been quantified to enable such mechanistic studies. A simple and effective method to measure the concentration of H2 in varying microenvironments surrounding Mg implants is the first step to understanding the biological impact of H2 on these cells. Here, the in vivo measurement of H2 surrounding fracture fixation devices implanted in vivo is demonstrated. An electrochemical H2 microsensor detected increased levels of H2 at three anatomical sites with a response time of about 30 s. The sensor showed the H2 concentration in the bone marrow at 1 week post-implantation (1460 ±â€¯320 µM) to be much higher than measured in the subcutaneous tissue (550 ±â€¯210 µM) and at the skin surface (120 ±â€¯50 µM). Additionally, the H2 concentrations measured in the bone marrow exceeded the concentration in a H2 saturated water solution (∼800 µM). These results suggest that H2 emanating from Mg implants in bone during degradation pass through the bone marrow and become at least partially trapped because of slow permeation through the bone. This study is the first to identify H2 concentrations in the bone marrow environment and will enable in vitro experiments to be executed at clinically relevant H2 concentrations to explore possible biological effects of H2 exposure. STATEMENT OF SIGNIFICANCE: An electrochemical H2 sensor was used to monitor the degradation of a Mg fracture fixation system in a lapine ulna fracture model. Interestingly, the H2 concentration in the bone marrow is 82% higher than H2 saturated water solution. This suggests H2 generated in situ is trapped in the bone marrow and bone is less permeable than the surrounding tissues. The detectable H2 at the rabbit skin also demonstrates a H2 sensor's ability to monitor the degradation process under thin layers of tissue. H2 sensing shows promise as a tool for monitoring the degradation of Mg alloy in vivo and creating in vitro test beds to more mechanistically evaluate the effects of varying H2 concentrations on cell types relevant to osteogenesis.


Assuntos
Medula Óssea/metabolismo , Placas Ósseas , Eletroquímica/métodos , Fixação de Fratura/instrumentação , Hidrogênio/química , Magnésio/química , Fraturas da Ulna/cirurgia , Implantes Absorvíveis , Ligas , Animais , Parafusos Ósseos , Fixação de Fratura/métodos , Consolidação da Fratura/efeitos dos fármacos , Gases , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Coelhos , Microtomografia por Raio-X
14.
ACS Biomater Sci Eng ; 4(3): 919-932, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33418774

RESUMO

Magnesium alloys have been extensively studied as a novel biodegradable metallic material for cardiovascular stent application. However, the ductility limitation of magnesium alloy has been a key issue for biodegradable stents applications. In this study, two different multiphase ultrahigh ductility Mg-Li-Zn alloys, LZ61 and LZ91, are fabricated in the form of extruded rods and evaluated both in vitro and in vivo. The microstructure, mechanical properties and in vitro degradation are evaluated as well as in vitro cytotoxicity. The in vivo degradation, tissue response, and systematic toxicity are evaluated in a mouse subcutaneous model. Measurements show that LZ61 and LZ91 exhibit more than 40% elongation at fracture without significantly compromising the strength. Both in vitro and in vivo degradation showed low degradation rates for LZ61 but high degradation rate for the LZ91 alloy. Excellent biocompatibility is observed both in vivo and in vitro for LZ61 and LZ91. In summary, this study successfully demonstrates that the ultraductility multiphase Mg-Li-Zn alloy has the potential to be used for stent applications. Compared to LZ91, the LZ61 alloy shows better balance of mechanical properties, corrosion resistance, and biocompatibility, indicating its promise for cardiovascular stent applications.

15.
Environ Sci Technol ; 52(3): 1357-1364, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29240997

RESUMO

A pretreatment protocol is presented that allows for the quantitative conversion and subsequent in situ spectroscopic analysis of [Re(CO)3]+ species in simulated Hanford tank waste. In this test case, the nonradioactive metal rhenium is substituted for technetium (Tc-99), a weak beta emitter, to demonstrate proof of concept for a method to measure a nonpertechnetate form of technetium in Hanford tank waste. The protocol encompasses adding a simulated waste sample containing the nonemissive [Re(CO)3]+ species to a developer solution that enables the rapid, quantitative conversion of the nonemissive species to a luminescent species which can then be detected spectroscopically. The [Re(CO)3]+ species concentration in an alkaline, simulated Hanford tank waste supernatant can be quantified by the standard addition method. In a test case, the [Re(CO)3]+ species was measured to be at a concentration of 38.9 µM, which was a difference of 2.01% from the actual concentration of 39.7 µM.


Assuntos
Resíduos Radioativos , Rênio , Animais , Espectrometria de Fluorescência , Suínos , Tecnécio
16.
Electroanalysis ; 29(3): 686-695, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28983182

RESUMO

In this work, we report on the determination of trace manganese (Mn) using cathodic stripping voltammetry (CSV) using a microfabricated sensor with a Pt thin-film working electrode. While an essential trace metal for human health, prolonged exposure to Mn tends to gradually impair our neurological system. The potential sources of Mn exposure make it necessary to monitor the concentration in various sample matrices. Previous work by us and others suggested CSV as an effective method for measuring trace Mn. The analytical performance metrics were characterized and optimized, leading to a calculated limit of detection (LOD) of 16.3 nM (0.9 ppb) in pH 5.5, 0.2 M acetate buffer. Further, we successfully validated Mn determination in surface water with ~90% accuracy and >97% precision as compared with ICP-MS "gold standard" measurement. Ultimately, with stable, accurate and precise electrochemical performance, this Pt sensor permits rapid monitoring of Mn in environmental samples, and could potentially be used for point-of-use measurements if coupled with portable instrumentation.

17.
Anal Chem ; 89(18): 9654-9663, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28816040

RESUMO

In this work, all three electrodes in an electrochemical cell were fabricated based on carbon nanotube (CNT) thread. CNT thread partially insulated with a thin polystyrene coating to define the microelectrode area was used as the working electrode; bare CNT thread was used as the auxiliary electrode; and a micro quasi-reference electrode was fabricated by electroplating CNT thread with Ag and then anodizing it in chloride solution to form a layer of AgCl. The Ag|AgCl coated CNT thread electrode provided a stable potential comparable to the conventional liquid-junction type Ag|AgCl reference electrode. The CNT thread auxiliary electrode provided a stable current, which is comparable to a Pt wire auxiliary electrode. This all-CNT thread three electrode cell has been evaluated as a microsensor for the simultaneous determination of trace levels of heavy metal ions by anodic stripping voltammetry (ASV). Hg2+, Cu2+, and Pb2+ were used as a representative system for this study. The calculated detection limits (based on the 3σ method) with a 120 s deposition time are 1.05, 0.53, and 0.57 nM for Hg2+, Cu2+, and Pb2+, respectively. These electrodes significantly reduce the dimensions of the conventional three electrode electrochemical cell to the microscale.


Assuntos
Cobre/análise , Técnicas Eletroquímicas , Chumbo/análise , Mercúrio/análise , Nanotubos de Carbono/química , Eletrodos , Tamanho da Partícula , Propriedades de Superfície
18.
Anal Chem ; 89(14): 7324-7332, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28605581

RESUMO

A novel microfabricated optically transparent thin-film electrode chip for fluorescence and absorption spectroelectrochemistry has been developed. The working electrode was composed of indium tin oxide (ITO); the quasi-reference and auxiliary electrodes were composed of platinum. The stability of the platinum quasi-reference electrode was improved by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference was characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry measurements showed that the electrode chip was comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip gave a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the value of 2.38 × 10-6 cm2/s using a standard electrochemical cell. By using the electrode chip in an optically transparent thin-layer electrode (OTTLE), the absorption based spectroelectrochemical modulation of [Fe(CN)6]3-/4- was demonstrated, as well as the fluorescence based modulation of [Ru(bpy)3]2+/3+. For the fluorescence spectroelectrochemical determination of [Ru(bpy)3]2+, a detection limit of 36 nM was observed.

19.
Anal Chem ; 89(6): 3345-3352, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28256823

RESUMO

This work demonstrates determination of lead (Pb) in surface water samples using a low-cost copper (Cu)-based electrochemical sensor. Heavy metals require careful monitoring due to their toxicity, yet current methods are too complex or bulky for point-of-care (POC) use. Electrochemistry offers a convenient alternative for metal determination, but the traditional electrodes, such as carbon or gold/platinum, are costly and difficult to microfabricate. Our copper-based sensor features a low-cost electrode material-copper-that offers simple fabrication and competitive performance in electrochemical detection. For anodic stripping voltammetry (ASV) of Pb, our sensor shows 21 nM (4.4 ppb) limit of detection, resistance to interfering metals such as cadmium (Cd) and zinc (Zn), and stable response in natural water samples with minimum sample pretreatment. These results suggest this electrochemical sensor is suitable for environmental and potentially biological applications, where accurate and rapid, yet inexpensive, on-site monitoring is necessary.


Assuntos
Cobre/química , Técnicas Eletroquímicas , Chumbo/análise , Poluentes Químicos da Água/análise , Acetatos/química , Calibragem , Eletrodos , Concentração de Íons de Hidrogênio
20.
Acta Biomater ; 50: 556-565, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069511

RESUMO

The effect of widely different corrosion rates of Mg alloys on four parameters of interest for in vivo characterization was evaluated: (1) the effectiveness of transdermal H2 measurements with an electrochemical sensor for noninvasively monitoring biodegradation compared to the standard techniques of in vivo X-ray imaging and weight loss measurement of explanted samples, (2) the chemical compositions of the corrosion layers of the explanted samples by XPS, (3) the effect on animal organs by histology, and (4) the accumulation of corrosion by-products in multiple organs by ICP-MS. The in vivo biodegradation of three magnesium alloys chosen for their widely varying corrosion rates - ZJ41 (fast), WKX41 (intermediate) and AZ31 (slow) - were evaluated in a subcutaneous implant mouse model. Measuring H2 with an electrochemical H2 sensor is a simple and effective method to monitor the biodegradation process in vivo by sensing H2 transdermally above magnesium alloys implanted subcutaneously in mice. The correlation of H2 levels and biodegradation rate measured by weight loss shows that this non-invasive method is fast, reliable and accurate. Analysis of the insoluble biodegradation products on the explanted alloys by XPS showed all of them to consist primarily of Mg(OH)2, MgO, MgCO3 and Mg3(PO4)2 with ZJ41 also having ZnO. The accumulation of magnesium and zinc were measured in 9 different organs by ICP-MS. Histological and ICP-MS studies reveal that there is no significant accumulation of magnesium in these organs for all three alloys; however, zinc accumulation in intestine, kidney and lung for the faster biodegrading alloy ZJ41 was observed. Although zinc accumulates in these three organs, no toxicity response was observed in the histological study. ICP-MS also shows higher levels of magnesium and zinc in the skull than in the other organs. STATEMENT OF SIGNIFICANCE: Biodegradable devices based on magnesium and its alloys are promising because they gradually dissolve and thereby avoid the need for subsequent removal by surgery if complications arise. In vivo biodegradation rate is one of the crucial parameters for the development of these alloys. Promising alloys are first evaluated in vivo by being implanted subcutaneously in mice for 1month. Here, we evaluated several magnesium alloys with widely varying corrosion rates in vivo using multiple characterization techniques. Since the alloys biodegrade by reacting with water forming H2 gas, we used a recently demonstrated, simple, fast and noninvasive method to monitor the biodegradation process by just pressing the tip of a H2 sensor against the skin above the implant. The analysis of 9 organs (intestine, kidney, spleen, lung, heart, liver, skin, brain and skull) for accumulation of Mg and Zn revealed no significant accumulation of magnesium in these organs. Zinc accumulation in intestine, kidney and lung was observed for the faster corroding implant ZJ41. The surfaces of explanted alloys were analyzed to determine the composition of the insoluble biodegradation products. The results suggest that these tested alloys are potential candidates for biodegradable implant applications.


Assuntos
Implantes Absorvíveis , Ligas/química , Técnicas Eletroquímicas/métodos , Hidrogênio/análise , Magnésio/química , Espectroscopia Fotoeletrônica , Espectrofotometria Atômica , Animais , Camundongos Nus , Distribuição Tecidual , Raios X , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...