Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Shock ; 53(5): 637-645, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31306347

RESUMO

BACKGROUND: Ischemic preconditioning (IPC) protects the myocardium against ischemia/reperfusion injury. Evidence suggests that hyperglycemia inhibits IPC-induced cardioprotection. The effects of hyperglycemia initiated during different phases of IPC on myocardial injury were characterized with emphasis on apoptosis and aggregation of polymorphonuclear granulocytes (PMN). METHODS: Male Wistar rats were subjected to 35 min of myocardial ischemia and 2 h of reperfusion. Control animals were not further treated. IPC was induced by three cycles of 3 min ischemia and 5 min of reperfusion before major ischemia. Hyperglycemia (blood glucose more than 22.2 mmol/L) was induced by glucose administration with or without IPC during different phases (trigger- (before ischemia), mediator- (during ischemia), early reperfusion-phase). One additional group received an anti-PMN-antibody before ischemia. Infarct size was quantified by triphenyltetrazolium chloride staining. Cytochrome C release and B-cell lymphoma two (Bcl-2) expression were assessed by western blot analysis. Poly-ADP-Ribose staining and PMN accumulation were quantified with immunohistochemistry and histochemistry. RESULTS: IPC reduced infarct size compared with control. Hyperglycemia completely abolished IPC-induced cardioprotection independent of the time point of initiation. Hyperglycemia before and during major ischemia but without IPC also slightly reduced infarct size. IPC reduced the accumulation of PMNs. This effect was reversed by hyperglycemia during trigger- and mediator-phase but not by hyperglycemia during reperfusion. Hyperglycemia alone had no effect on PMN accumulation. In all treatment groups, signs of myocardial apoptosis were reduced compared with control. IPC alone, combined with hyperglycemia and anti-PMN treatment, reduced apoptosis by a Bcl-2-associated mechanism. Hyperglycemia alone reduced apoptosis by a Bcl-2-independent pathway. CONCLUSION: Hyperglycemia inhibits IPC-induced cardioprotection independent of its onset. Furthermore, hyperglycemia prevents apoptosis and IPC-induced reduction of PMN aggregation.


Assuntos
Hiperglicemia/complicações , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Apoptose , Agregação Celular , Modelos Animais de Doenças , Granulócitos/fisiologia , Masculino , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Wistar
2.
Shock ; 36(1): 45-53, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21478813

RESUMO

Remote ischemic preconditioning (RIPC) and local ischemic preconditioning (IPC) protect the myocardium from subsequent ischemia/reperfusion (I/R) injury. In this study, the protective effects of early RIPC, IPC, and the combination of both (RIPC-IPC) were characterized. Furthermore, the hypothesis was tested that protein kinase C (PKC) and mitogen-activated protein kinases (MAPKs), important mediators of IPC, are activated in RIPC. Infarct size, serum troponin T, and creatine kinase levels were assessed after 4 × 5-min noninvasive RIPC, local IPC, or a combination of both and 35 min of regional ischemia and 120 min of reperfusion. Protein kinase C ε and the MAPKs extracellular signal-regulated MAPK (ERK), c-jun N-terminal kinase (JNK), and p38 MAPK were analyzed by Western blot analysis and activity assays in the myocardium and skeletal muscle immediately after the preconditioning protocol. Remote ischemic preconditioning, IPC, and RIPC-IPC significantly reduced myocardial infarct size (RIPC-I/R: 54% ± 15%; IPC-I/R: 33% ± 15%; RIPC-IPC-I/R: 33% ± 15%; P < 0.05 vs. I/R [76% ± 14%]) and troponin T release (RIPC-I/R: 15.4 ± 6.4 ng/mL; IPC-I/R: 10.9 ± 7.0 ng/mL; RIPC-IPC-I/R: 9.8 ± 5.6 ng/mL; P < 0.05 vs. I/R [27.1 ± 12.0 ng/mL]) after myocardial I/R. Ischemic preconditioning led to an activation of PKCε and ERK 1/2, whereas RIPC did not lead to a translocation of PKCε to the mitochondria or phosphorylation of the MAPKs ERK 1/2, JNK 1/2, and p38 MAPK. Remote ischemic preconditioning did not induce translocation of PKCε to the mitochondria or phosphorylation of MAPKs in the preconditioned muscle tissue. Remote ischemic preconditioning, IPC, and RIPC-IPC exert early protection against myocardial I/R injury. Remote ischemic preconditioning and local IPC exhibit different activation dynamics of signal transducers in the myocardium. The studied PKC-MAPK pathway is likely not involved in the protective effects of RIPC.


Assuntos
Precondicionamento Isquêmico , Infarto do Miocárdio/metabolismo , Animais , Western Blotting , Creatina Quinase/sangue , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hemodinâmica/efeitos dos fármacos , Precondicionamento Isquêmico Miocárdico , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Infarto do Miocárdio/sangue , Fosforilação , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Troponina T/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...