Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 63(13): 4731-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22922639

RESUMO

Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of small grain cereal crops. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON). DON inhibits protein synthesis in eukaryotic cells and acts as a virulence factor during fungal pathogenesis, therefore resistance to DON is considered an important component of resistance against FHB. One mechanism of resistance to DON is conversion of DON to DON-3-O-glucoside (D3G). Previous studies showed that expression of the UDP-glucosyltransferase genes HvUGT13248 from barley and AtUGt73C5 (DOGT1) from Arabidopsis thaliana conferred DON resistance to yeast. Over-expression of AtUGt73C5 in Arabidopsis led to increased DON resistance of seedlings but also to dwarfing of transgenic plants due to the formation of brassinosteroid-glucosides. The objectives of this study were to develop transgenic Arabidopsis expressing HvUGT13248, to test for phenotypic changes in growth habit, and the response to DON. Transgenic lines that constitutively expressed the epitope-tagged HvUGT13248 protein exhibited increased resistance to DON in a seed germination assay and converted DON to D3G to a higher extent than the untransformed wild-type. By contrast to the over-expression of DOGT1 in Arabidopsis, which conjugated the brassinosteriod castasterone with a glucoside group resulting in a dwarf phenotype, expression of the barley HvUGT13248 gene did not lead to drastic morphological changes. Consistent with this observation, no castasterone-glucoside formation was detectable in yeast expressing the barley HvUGT13248 gene. This barley UGT is therefore a promising candidate for transgenic approaches aiming to increase DON and Fusarium resistance of crop plants without undesired collateral effects.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Glucosiltransferases/metabolismo , Hordeum/enzimologia , Inibidores da Síntese de Proteínas/farmacologia , Tricotecenos/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Flores/efeitos dos fármacos , Flores/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Expressão Gênica , Germinação/efeitos dos fármacos , Glucosídeos/metabolismo , Glucosiltransferases/genética , Hordeum/genética , Inativação Metabólica , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Transgenes , Fatores de Virulência
2.
J Exp Bot ; 59(9): 2371-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18467324

RESUMO

Fusarium head blight (FHB; scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat worldwide. FHB causes yield reductions and contamination of grains with trichothecene mycotoxins such as deoxynivalenol (DON). The genetic variation in existing wheat germplasm pools for FHB resistance is low and may not provide sufficient resistance to develop cultivars through traditional breeding approaches. Thus, genetic engineering provides an additional approach to enhance FHB resistance. The objectives of this study were to develop transgenic wheat expressing a barley class II chitinase and to test the transgenic lines against F. graminearum infection under greenhouse and field conditions. A barley class II chitinase gene was introduced into the spring wheat cultivar, Bobwhite, by biolistic bombardment. Seven transgenic lines were identified that expressed the chitinase transgene and exhibited enhanced Type II resistance in the greenhouse evaluations. These seven transgenic lines were tested under field conditions for percentage FHB severity, percentage visually scabby kernels (VSK), and DON accumulation. Two lines (C8 and C17) that exhibited high chitinase protein levels also showed reduced FHB severity and VSK compared to Bobwhite. One of the lines (C8) also exhibited reduced DON concentration compared with Bobwhite. These results showed that transgenic wheat expressing a barley class II chitinase exhibited enhanced resistance against F. graminearum in greenhouse and field conditions.


Assuntos
Quitinases/metabolismo , Fusarium/fisiologia , Engenharia Genética , Imunidade Inata , Doenças das Plantas/microbiologia , Triticum/imunologia , Triticum/microbiologia , Quitinases/genética , Expressão Gênica , Hordeum/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Triticum/genética
3.
Plant Cell Rep ; 26(4): 479-88, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17103001

RESUMO

Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum and other Fusarium species, is a major disease problem for wheat production worldwide. To combat this problem, large-scale breeding efforts have been established. Although progress has been made through standard breeding approaches, the level of resistance attained is insufficient to withstand epidemic conditions. Genetic engineering provides an alternative approach to enhance the level of resistance. Many defense response genes are induced in wheat during F. graminearum infection and may play a role in reducing FHB. The objectives of this study were (1) to develop transgenic wheat overexpressing the defense response genes alpha-1-purothionin, thaumatin-like protein 1 (tlp-1), and beta-1,3-glucanase; and (2) to test the resultant transgenic wheat lines against F. graminearum infection under greenhouse and field conditions. Using the wheat cultivar Bobwhite, we developed one, two, and four lines carrying the alpha-1-purothionin, tlp-1, and beta-1,3-glucanase transgenes, respectively, that had statistically significant reductions in FHB severity in greenhouse evaluations. We tested these seven transgenic lines under field conditions for percent FHB disease severity, deoxynivalenol (DON) mycotoxin accumulation, and percent visually scabby kernels (VSK). Six of the seven lines differed from the nontransgenic parental Bobwhite line for at least one of the disease traits. A beta-1,3-glucanase transgenic line had enhanced resistance, showing lower FHB severity, DON concentration, and percent VSK compared to Bobwhite. Taken together, the results showed that overexpression of defense response genes in wheat could enhance the FHB resistance in both greenhouse and field conditions.


Assuntos
Fusarium/crescimento & desenvolvimento , Doenças das Plantas/genética , Triticum/genética , Southern Blotting , Western Blotting , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Genética , Triticum/metabolismo , Triticum/microbiologia
4.
Plant Cell Rep ; 25(4): 313-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16252090

RESUMO

Fusarium head blight (FHB), caused primarily by Fusarium graminearum, is a major disease problem in wheat (Triticum aestivum). Genetic engineering holds significant potential to enhance FHB resistance in wheat. Due to the requirement of screening for FHB resistance on flowers at anthesis, the number of screens carried out in a year is limited. Our objective was to evaluate the feasibility of using the rapid-maturing dwarf wheat cultivar Apogee as an alternative genotype for transgenic FHB resistance research. Our transformation efficiency (number of transgenic plants/number of embryos) for Apogee was 1.33%. Apogee was also found to exhibit high FHB susceptibility and reached anthesis within 4 weeks. Interestingly, microsatellite marker haplotype analysis of the chromosome 3BS FHB resistant quantitative trait locus (QTL) region indicated that this region maybe deleted in Apogee. Our results indicate that Apogee is particularly well suited for accelerating transgenic FHB resistance research and transgenic wheat research in general.


Assuntos
Fusarium/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Engenharia Genética , Modelos Biológicos , Transformação Genética , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...