Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 9(1): 81, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805607

RESUMO

Protecting the Martian environment from contamination with terrestrial microbes is generally seen as essential to the scientific exploration of Mars, especially when it comes to the search for indigenous life. However, while companies and space agencies aim at getting to Mars within ambitious timelines, the state-of-the-art planetary protection measures are only applicable to uncrewed spacecraft. With this paper, we attempt to reconcile these two conflicting goals: the human exploration of Mars and its protection from biological contamination. In our view, the one nominal mission activity that is most prone to introducing terrestrial microbes into the Martian environment is when humans leave their habitat to explore the Martian surface, if one were to use state-of-the-art airlocks. We therefore propose to adapt airlocks specifically to the goals of planetary protection. We suggest a concrete concept for such an adapted airlock, believing that only practical and implementable solutions will be followed by human explorers in the long run.

2.
Life Sci Space Res (Amst) ; 36: 86-89, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682834

RESUMO

The Moon and Mars Base Analog (MaMBA) is a concept for an extraterrestrial habitat developed at the Center of Applied Space Technology and Microgravity (ZARM) in Bremen, Germany. The long-term goal of the associated project is to create a technologically functioning prototype for a base on the Moon and on Mars. One key aspect of developing such a prototype base is the integration of a bioregenerative life support system (BLSS) and its testing under realistic conditions. A long-duration mission to Mars, in particular, will require BLSS with a reliability that can hardly be reached without extensive testing, starting well in advance of the mission. Standards exist for comparing the capabilities of various BLSS, which strongly focus on technological aspects. These, we argue, should be complemented with the use of facilities that enable investigations and optimization of BLSS prototypes with regard to their requirements on logistics, training, recovery from failure and contamination, and other constraints imposed when humans are in the loop. Such facilities, however, are lacking. The purpose of this paper is to present the MaMBA facility and its potential usages that may help close this gap. We describe how a BLSS (or parts of a BLSS) can be integrated into the current existing mock-up at the ZARM for relatively low-cost investigations of human factors affecting the BLSS. The MaMBA facility is available through collaborations as a test platform for characterizing, benchmarking, and testing BLSS under nominal and off-nominal conditions.


Assuntos
Dendroaspis , Sistemas Ecológicos Fechados , Marte , Voo Espacial , Animais , Humanos , Lua , Sistemas de Manutenção da Vida , Reprodutibilidade dos Testes
3.
NPJ Microgravity ; 8(1): 43, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289210

RESUMO

The sustainability of crewed infrastructures on Mars will depend on their abilities to produce consumables on site. These abilities may be supported by diazotrophic, rock-leaching cyanobacteria: from resources naturally available on Mars, they could feed downstream biological processes and lead to the production of oxygen, food, fuels, structural materials, pharmaceuticals and more. The relevance of such a system will be dictated largely by the efficiency of regolith utilization by cyanobacteria. We therefore describe the growth dynamics of Anabaena sp. PCC 7938 as a function of MGS-1 concentration (a simulant of a widespread type of Martian regolith), of perchlorate concentration, and of their combination. To help devise improvement strategies and predict dynamics in regolith of differing composition, we identify the limiting element in MGS-1 - phosphorus - and its concentration-dependent effect on growth. Finally, we show that, while maintaining cyanobacteria and regolith in a single compartment can make the design of cultivation processes challenging, preventing direct physical contact between cells and grains may reduce growth. Overall, we hope for the knowledge gained here to support both the design of cultivation hardware and the modeling of cyanobacterium growth within.

5.
Front Microbiol ; 12: 611798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664714

RESUMO

The leading space agencies aim for crewed missions to Mars in the coming decades. Among the associated challenges is the need to provide astronauts with life-support consumables and, for a Mars exploration program to be sustainable, most of those consumables should be generated on site. Research is being done to achieve this using cyanobacteria: fed from Mars's regolith and atmosphere, they would serve as a basis for biological life-support systems that rely on local materials. Efficiency will largely depend on cyanobacteria's behavior under artificial atmospheres: a compromise is needed between conditions that would be desirable from a purely engineering and logistical standpoint (by being close to conditions found on the Martian surface) and conditions that optimize cyanobacterial productivity. To help identify this compromise, we developed a low-pressure photobioreactor, dubbed Atmos, that can provide tightly regulated atmospheric conditions to nine cultivation chambers. We used it to study the effects of a 96% N2, 4% CO2 gas mixture at a total pressure of 100 hPa on Anabaena sp. PCC 7938. We showed that those atmospheric conditions (referred to as MDA-1) can support the vigorous autotrophic, diazotrophic growth of cyanobacteria. We found that MDA-1 did not prevent Anabaena sp. from using an analog of Martian regolith (MGS-1) as a nutrient source. Finally, we demonstrated that cyanobacterial biomass grown under MDA-1 could be used for feeding secondary consumers (here, the heterotrophic bacterium E. coli W). Taken as a whole, our results suggest that a mixture of gases extracted from the Martian atmosphere, brought to approximately one tenth of Earth's pressure at sea level, would be suitable for photobioreactor modules of cyanobacterium-based life-support systems. This finding could greatly enhance the viability of such systems on Mars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...