Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Mol Biol Educ ; 46(4): 403-409, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29984554

RESUMO

Protein ORIGAMI (http://ibg.kit.edu/protein_origami) is a browser-based web application that allows the user to create straightforward 3D paper models of folded peptides for research, teaching and presentations. An amino acid sequence can be turned into α-helices, ß-strands and random coils that can be printed out and folded into properly scaled models, with a color code denoting the biophysical characteristics of each amino acid residue (hydrophobicity, charge, etc.). These models provide an intuitive visual and tactile understanding of peptide interactions with other partners, such as helix-helix assembly, oligomerization, membrane binding, or pore formation. Helices can also be displayed as a helical wheel or helical mesh in 2D graphics, to be used in publications or presentations. The highly versatile programme Protein ORIGAMI is also suited to create less conventional helices with arbitrary pitch (e.g., 310 -helix, π-helix, or left-handed helices). Noncanonical amino acids, labels and different terminal modifications can be defined and displayed at will, and different protonation states can be shown. In addition to the web application, the program source code can be downloaded and installed locally on a PC. The printed paper models can be readily used for daily research and discussions, just as for educational purposes and teaching. © 2018 by The International Union of Biochemistry and Molecular Biology, 46:403-409, 2018.


Assuntos
Modelos Moleculares , Papel , Peptídeos/química , Dobramento de Proteína , Software , Ensino , Compreensão , Humanos , Aprendizagem
2.
Cell ; 152(1-2): 316-26, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332763

RESUMO

We propose a concept for the folding and self-assembly of the pore-forming TatA complex from the Twin-arginine translocase and of other membrane proteins based on electrostatic "charge zippers." Each subunit of TatA consists of a transmembrane segment, an amphiphilic helix (APH), and a C-terminal densely charged region (DCR). The sequence of charges in the DCR is complementary to the charge pattern on the APH, suggesting that the protein can be "zipped up" by a ladder of seven salt bridges. The length of the resulting hairpin matches the lipid bilayer thickness, hence a transmembrane pore could self-assemble via intra- and intermolecular salt bridges. The steric feasibility was rationalized by molecular dynamics simulations, and experimental evidence was obtained by monitoring the monomer-oligomer equilibrium of specific charge mutants. Similar "charge zippers" are proposed for other membrane-associated proteins, e.g., the biofilm-inducing peptide TisB, the human antimicrobial peptide dermcidin, and the pestiviral E(RNS) protein.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Toxinas Bacterianas/química , Proteínas de Escherichia coli/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/metabolismo , Dobramento de Proteína , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...