Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 93(7): 876-890, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38778676

RESUMO

Interspecific interactions, including predator-prey, intraguild predation (IGP) and competition, may drive distribution and habitat use of predator communities. However, elucidating the relative importance of these interactions in shaping predator distributions is challenging, especially in marine communities comprising highly mobile species. We used individual-based models (IBMs) to predict the habitat distributions of apex predators, intraguild (IG) prey and prey. We then used passive acoustic telemetry to test these predictions in a subtropical marine predator community consisting of eight elasmobranch (i.e. shark and ray) species in Bimini, The Bahamas. IBMs predicted that prey and IG prey will preferentially select habitats based on safety over resources (food), with stronger selection for safe habitat by smaller prey. Elasmobranch space-use patterns matched these predictions. Species with predator-prey and asymmetrical IGP (between apex and small mesopredators) interactions showed the clearest spatial separation, followed by asymmetrical IGP among apex and large mesopredators. Competitors showed greater spatial overlap although with finer-scale differences in microhabitat use. Our study suggests space-use patterns in elasmobranchs are at least partially driven by interspecific interactions, with stronger spatial separation occurring where interactions include predator-prey relationships or IGP.


Assuntos
Ecossistema , Cadeia Alimentar , Comportamento Predatório , Tubarões , Animais , Tubarões/fisiologia , Rajidae/fisiologia , Bahamas , Modelos Biológicos , Distribuição Animal , Telemetria
2.
Nat Ecol Evol ; 8(6): 1118-1128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38769434

RESUMO

Many shark populations are in decline around the world, with severe ecological and economic consequences. Fisheries management and marine protected areas (MPAs) have both been heralded as solutions. However, the effectiveness of MPAs alone is questionable, particularly for globally threatened sharks and rays ('elasmobranchs'), with little known about how fisheries management and MPAs interact to conserve these species. Here we use a dedicated global survey of coral reef elasmobranchs to assess 66 fully protected areas embedded within a range of fisheries management regimes across 36 countries. We show that conservation benefits were primarily for reef-associated sharks, which were twice as abundant in fully protected areas compared with areas open to fishing. Conservation benefits were greatest in large protected areas that incorporate distinct reefs. However, the same benefits were not evident for rays or wide-ranging sharks that are both economically and ecologically important while also threatened with extinction. We show that conservation benefits from fully protected areas are close to doubled when embedded within areas of effective fisheries management, highlighting the importance of a mixed management approach of both effective fisheries management and well-designed fully protected areas to conserve tropical elasmobranch assemblages globally.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Pesqueiros , Tubarões , Rajidae , Animais , Conservação dos Recursos Naturais/métodos
3.
Science ; 380(6650): 1155-1160, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37319199

RESUMO

A global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages. Shark-dominated assemblages persist in wealthy nations with strong governance and in highly protected areas, whereas poverty, weak governance, and a lack of shark management are associated with depauperate assemblages mainly composed of rays. Without action to address these diversity deficits, loss of ecological function and ecosystem services will increasingly affect human communities.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Extinção Biológica , Tubarões , Rajidae , Animais , Humanos , Pesqueiros , Biodiversidade
5.
J Anim Ecol ; 92(7): 1388-1403, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37248620

RESUMO

The potential for animals to modify spatial patterns of nutrient limitation for autotrophs and habitat availability for other members of their communities is increasingly recognized. However, net trophic effects of consumers acting as ecosystem engineers remain poorly known. The American Alligator Alligator mississippiensis is an abundant predator capable of dramatic modifications of physical habitat through the creation and maintenance of pond-like basins, but its role in influencing community structure and nutrient dynamics is less appreciated. We investigated if alligators engineer differences in nutrient availability and changes to community structure by their creation of 'alligator ponds' compared to the surrounding phosphorus (P)-limited oligotrophic marsh. We used a halo sampling design of three distinct habitats extending outward from 10 active alligator ponds across a hydrological gradient in the Everglades, USA. We performed nutrient analysis on basal food-web resources and quantitative community analyses, and stoichiometric analyses on plants and animals. Our findings demonstrate that alligators act as ecosystem engineers and enhance food-web heterogeneity by increasing nutrient availability, manipulating physical structure and altering algal, plant and animal communities. Flocculent detritus, an unconsolidated layer of particulate organic matter and soil, showed strong patterns of P enrichment in ponds. Higher P availability in alligator ponds also resulted in bottom-up trophic transfer of nutrients as evidenced by higher growth rates (lower N:P) for plants and aquatic consumers. Edge habitats surrounding alligator ponds contained the most diverse communities of invertebrates and plants, but low total abundance of fishes, likely driven by high densities of emergent macrophytes. Pond communities exhibited higher abundance of fish compared to edge habitat and were dominated by compositions of small invertebrates that track high nutrient availability in the water column. Marshes contained high numbers of animals that are closely tied to periphyton mats, which were absent from other habitats. Alligator-engineered habitats are ecologically important by providing nutrient-enriched 'hotspots' in an oligotrophic system, habitat heterogeneity to marshes, and refuges for other fauna during seasonal disturbances. This work adds to growing evidence that efforts to model community dynamics should routinely consider animal-mediated bottom-up processes like ecosystem engineering.


Assuntos
Ecossistema , Áreas Alagadas , Animais , Cadeia Alimentar , Invertebrados , Plantas , Peixes , Nutrientes
6.
Sci Rep ; 13(1): 6710, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185970

RESUMO

Determining the drivers of prey selection in marine predators is critical when investigating ecosystem structure and function. The newly recognized Rice's whale (Balaenoptera ricei) is one of the most critically endangered large whales in the world and endemic to the industrialized Gulf of Mexico. Here, we investigated the drivers of resource selection by Rice's whales in relation to prey availability and energy density. Bayesian stable isotope (δ13C, δ15N) mixing models suggest that Rice's whales feed primarily on a schooling fish, Ariomma bondi (66.8% relative contribution). Prey selection using the Chesson's index revealed that active prey selection was found to be positive for three out of the four potential prey identified in the mixing model. A low degree of overlap between prey availability and diet inferred from the mixing model (Pianka Index: 0.333) suggests that prey abundance is not the primary driver of prey selection. Energy density data suggest that prey selection may be primarily driven by the energy content. Results from this study indicate that Rice's whales are selective predators consuming schooling prey with the highest energy content. Environmental changes in the region have the potential to influence prey species that would make them less available to Rice's whales.


Assuntos
Balaenoptera , Oryza , Animais , Ecossistema , Golfo do México , Teorema de Bayes , Cetáceos
7.
Oecologia ; 201(3): 673-688, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36930348

RESUMO

The coexistence of ecologically and morphologically similar species is often facilitated by the partitioning of ecological niches. While subordinate species can reduce competition with dominant competitors through spatial and/or trophic segregation, empirical support from wild settings, particularly those involving large-bodied taxa in marine ecosystems, are rare. Shark nursery areas provide an opportunity to investigate the mechanisms of coexistence. We used experimental and field studies of sympatric juvenile sharks (blacktip reef shark, Carcharhinus melanopterus; sicklefin lemon shark, Negaprion acutidens) to investigate how competitive ability influenced realized niches at St. Joseph Atoll, Seychelles. Captive trials revealed that sicklefin lemon sharks were dominant over blacktip reef sharks, consistently taking food rewards. In the field, blacktip reef sharks were captured over a broader area than sicklefin lemon sharks, but daily space use of actively tracked sharks showed a high degree of overlap across microhabitats. While stomach contents analysis revealed that blacktip reef shark diets included a broader range of prey items, stable isotope analysis demonstrated significantly higher mean δ13C values for sicklefin lemon sharks, suggesting diverging dietary preferences. Overall, our results matched theoretical predictions of subordinate competitors using a greater range of habitats and displaying broader feeding niches than competitively dominant species. While separating the realized and fundamental niche of marine predators is complicated, we provide evidence that resource partitioning is at least partially driven by interspecific competition.


Assuntos
Ecossistema , Tubarões , Animais , Estado Nutricional
8.
Sci Adv ; 8(9): eabl9155, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235355

RESUMO

Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from n = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants). We observed a repeated pattern of trade-offs between resistance and resilience across analyses. These patterns are likely the outcomes of evolutionary adaptation, they conform to disturbance theories, and they indicate that consistent rules may govern ecosystem susceptibility to tropical cyclones.

9.
iScience ; 25(1): 103646, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35024583

RESUMO

Prey depletion may contribute to marine predator declines, yet the forage base required to sustain an unfished population of predatory fish at carrying capacity is unknown. We integrated demographic and physiological data within a Bayesian bioenergetic model to estimate annual consumption of a gray reef shark (Carcharhinus amblyrhynchos) population at a remote Pacific atoll (Palmyra Atoll) that are at carrying capacity. Furthermore, we estimated the proportion of the atoll's reef fish biomass production consumed by the gray reef sharks, assuming sharks either partially foraged pelagically (mean 7%), or solely within the reef environment (mean 52%). We then predicted the gray reef shark population potential of other, less remote Pacific Ocean coral reef islands, illustrating that current populations are substantially smaller than could be supported by their forage base. Our research highlights the utility of modeling how far predator population sizes are from their expected carrying capacity in informing marine conservation.

11.
iScience ; 24(3): 102097, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33681724

RESUMO

Proximity and size of the nearest market ('market gravity') have been shown to have strong negative effects on coral reef fish communities that can be mitigated by the establishment of closed areas. However, moray eels are functionally unique predators that are generally not subject to targeted fishing and should therefore not directly be affected by these factors. We used baited remote underwater video systems to investigate associations between morays and anthropogenic, habitat, and ecological factors in the Caribbean region. Market gravity had a positive effect on morays, while the opposite pattern was observed in a predator group subject to exploitation (sharks). Environmental DNA analyses corroborated the positive effect of market gravity on morays. We hypothesize that the observed pattern could be the indirect result of the depletion of moray competitors and predators near humans.

12.
Mol Ecol Resour ; 21(4): 1056-1067, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33527665

RESUMO

Animal dietary information provides the foundation for understanding trophic relationships, which is essential for ecosystem management. Yet, in marine systems, high-resolution diet reconstruction tools are currently under-developed. This is particularly pertinent for large marine vertebrates, for which direct foraging behaviour is difficult or impossible to observe and, due to their conservation status, the collection of stomach contents at adequate sample sizes is frequently impossible. Consequently, the diets of many groups, such as sharks, have largely remained unresolved. To address this knowledge gap, we applied metabarcoding to prey DNA in faecal residues (fDNA) collected on cotton swabs from the inside of a shark's cloaca. We used a previously published primer set targeting a small section of the 12S rRNA mitochondrial gene to amplify teleost prey species DNA. We tested the utility of this method in a controlled feeding experiment with captive juvenile lemon sharks (Negaprion brevirostris) and on free-ranging juvenile bull sharks (Carcharhinus leucas). In the captive trial, we successfully isolated and correctly identified teleost prey DNA without incurring environmental DNA contamination from the surrounding seawater. In the field, we were able to reconstruct high-resolution teleost dietary information from juvenile C. leucas fDNA that was generally consistent with expectations based on published diet studies of this species. While further investigation is needed to validate the method for larger sharks and other species, it is expected to be broadly applicable to aquatic vertebrates and provides an opportunity to advance our understanding of trophic interactions in marine and freshwater systems.


Assuntos
Código de Barras de DNA Taxonômico , Dieta/veterinária , Tubarões , Animais , Cloaca , DNA , Ecossistema , Peixes/classificação , RNA Ribossômico
13.
J Anim Ecol ; 90(9): 2041-2052, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33624313

RESUMO

Extreme climatic events (ECEs) and predator removal represent some of the most widespread stressors to ecosystems. Though species interactions can alter ecological effects of climate change (and vice versa), it is less understood whether, when and how predator removal can interact with ECEs to exacerbate their effects. Understanding the circumstances under which such interactions might occur is critical because predator loss is widespread and ECEs can generate rapid phase shifts in ecosystems which can ultimately lead to tropicalization. Our goal was to determine whether loss of predation risk may be an important mechanism governing ecosystem responses to extreme events, and whether the effects of such events, such as tropicalization, can occur even when species range shifts do not. Specifically, our goal was to experimentally simulate the loss of an apex predator, the tiger shark Galeocerdo cuvier effects on a recently damaged seagrass ecosystem of Shark Bay, Australia by applying documented changes to risk-sensitive grazing of dugong Dugong dugon herbivores. Using a 16-month-field experiment established in recently disturbed seagrass meadows, we used previous estimates of risk-sensitive dugong foraging behaviour to simulate altered risk-sensitive foraging densities and strategies of dugongs consistent with apex predator loss, and tracked seagrass responses to the simulated grazing. Grazing treatments targeted and removed tropical seagrasses, which declined. However, like in other mixed-bed habitats where dugongs forage, treatments also incidentally accelerated temperate seagrass losses, revealing that herbivore behavioural changes in response to predator loss can exacerbate ECE and promote tropicalization, even without range expansions or introductions of novel species. Our results suggest that changes to herbivore behaviours triggered by loss of predation risk can undermine ecological resilience to ECEs, particularly where long-lived herbivores are abundant. By implication, ongoing losses of apex predators may combine with increasingly frequent ECEs to amplify climate change impacts across diverse ecosystems and large spatial scales.


Assuntos
Dugong , Tubarões , Animais , Mudança Climática , Ecossistema , Comportamento Predatório
14.
Ecol Lett ; 24(1): 113-129, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32990363

RESUMO

Non-consumptive predator effects (NCEs) are now widely recognised for their capacity to shape ecosystem structure and function. Yet, forecasting the propagation of these predator-induced trait changes through particular communities remains a challenge. Accordingly, focusing on plasticity in prey anti-predator behaviours, we conceptualise the multi-stage process by which predators trigger direct and indirect NCEs, review and distil potential drivers of contingencies into three key categories (properties of the prey, predator and setting), and then provide a general framework for predicting both the nature and strength of direct NCEs. Our review underscores the myriad factors that can generate NCE contingencies while guiding how research might better anticipate and account for them. Moreover, our synthesis highlights the value of mapping both habitat domains and prey-specific patterns of evasion success ('evasion landscapes') as the basis for predicting how direct NCEs are likely to manifest in any particular community. Looking ahead, we highlight two key knowledge gaps that continue to impede a comprehensive understanding of non-consumptive predator-prey interactions and their ecosystem consequences; namely, insufficient empirical exploration of (1) context-dependent indirect NCEs and (2) the ways in which direct and indirect NCEs are shaped interactively by multiple drivers of context dependence.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Ecossistema , Previsões
16.
Nature ; 583(7818): 801-806, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699418

RESUMO

Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status1,2. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats3. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally. Our results reveal the profound impact that fishing has had on reef shark populations: we observed no sharks on almost 20% of the surveyed reefs. Reef sharks were almost completely absent from reefs in several nations, and shark depletion was strongly related to socio-economic conditions such as the size and proximity of the nearest market, poor governance and the density of the human population. However, opportunities for the conservation of reef sharks remain: shark sanctuaries, closed areas, catch limits and an absence of gillnets and longlines were associated with a substantially higher relative abundance of reef sharks. These results reveal several policy pathways for the restoration and management of reef shark populations, from direct top-down management of fishing to indirect improvement of governance conditions. Reef shark populations will only have a high chance of recovery by engaging key socio-economic aspects of tropical fisheries.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Recifes de Corais , Ecossistema , Pesqueiros/economia , Pesqueiros/estatística & dados numéricos , Tubarões/fisiologia , Animais , Mapeamento Geográfico , Densidade Demográfica , Fatores Socioeconômicos
17.
Glob Chang Biol ; 26(6): 3525-3538, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32129909

RESUMO

The increased occurrence of extreme climate events, such as marine heatwaves (MHWs), has resulted in substantial ecological impacts worldwide. To date, metrics of thermal stress within marine systems have focussed on coral communities, and less is known about measuring stress relevant to other primary producers, such as seagrasses. An extreme MHW occurred across the Western Australian coastline in the austral summer of 2010-2011, exposing marine communities to summer seawater temperatures 2-5°C warmer than average. Using a combination of satellite imagery and in situ assessments, we provide detailed maps of seagrass coverage across the entire Shark Bay World Heritage Area (ca. 13,000 km2 ) before (2002 and 2010) and after the MHW (2014 and 2016). Our temporal analysis of these maps documents the single largest loss in dense seagrass extent globally (1,310 km2 ) following an acute disturbance. Total change in seagrass extent was spatially heterogeneous, with the most extensive declines occurring in the Western Gulf, Wooramel Bank and Faure Sill. Spatial variation in seagrass loss was best explained by a model that included an interaction between two heat stress metrics, the most substantial loss occurring when degree heating weeks (DHWm) was ≥10 and the number of days exposed to extreme sea surface temperature during the MHW (DaysOver) was ≥94. Ground truthing at 622 points indicated that change in seagrass cover was predominantly due to loss of Amphibolis antarctica rather than Posidonia australis, the other prominent seagrass at Shark Bay. As seawater temperatures continue to rise and the incidence of MHWs increase globally, this work will provide a basis for identifying areas of meadow degradation, or stability and recovery, and potential areas of resilience.


Assuntos
Alismatales , Antozoários , Animais , Austrália , Ecossistema , Imagens de Satélites , Água do Mar
18.
Ecol Evol ; 9(23): 12980-13000, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871624

RESUMO

Knowledge of population structure, connectivity, and effective population size remains limited for many marine apex predators, including the bull shark Carcharhinus leucas. This large-bodied coastal shark is distributed worldwide in warm temperate and tropical waters, and uses estuaries and rivers as nurseries. As an apex predator, the bull shark likely plays a vital ecological role within marine food webs, but is at risk due to inshore habitat degradation and various fishing pressures. We investigated the bull shark's global population structure and demographic history by analyzing the genetic diversity of 370 individuals from 11 different locations using 25 microsatellite loci and three mitochondrial genes (CR, nd4, and cytb). Both types of markers revealed clustering between sharks from the Western Atlantic and those from the Western Pacific and the Western Indian Ocean, with no contemporary gene flow. Microsatellite data suggested low differentiation between the Western Indian Ocean and the Western Pacific, but substantial differentiation was found using mitochondrial DNA. Integrating information from both types of markers and using Bayesian computation with a random forest procedure (ABC-RF), this discordance was found to be due to a complete lack of contemporary gene flow. High genetic connectivity was found both within the Western Indian Ocean and within the Western Pacific. In conclusion, these results suggest important structuring of bull shark populations globally with important gene flow occurring along coastlines, highlighting the need for management and conservation plans on regional scales rather than oceanic basin scale.

19.
J Fish Biol ; 95(6): 1535-1539, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31621068

RESUMO

The effects of anticoagulant EDTA and sodium heparin (SH) on stable carbon δ13 C and nitrogen δ15 N isotopic values of red blood cells (RBC) and blood plasma in juvenile blacktip reef sharks Carcharhinus melanopterus were analysed. Plasma preserved with anticoagulants was not isotopically distinct from plasma stored in no-additive control tubes but RBC δ15 N values exhibited small enrichments when preserved with EDTA and SH. Results suggest EDTA and SH are viable anticoagulants for stable isotopic analyses of blood fractions but further studies are advised to validate results.


Assuntos
Anticoagulantes/farmacologia , Isótopos de Carbono/análise , Eritrócitos/química , Isótopos de Nitrogênio/análise , Plasma/química , Tubarões/sangue , Animais , Ácido Edético/farmacologia , Heparina/farmacologia , Manejo de Espécimes
20.
Oecologia ; 189(3): 621-636, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30796523

RESUMO

Ontogenetic niche shifts are widespread. However, individual differences in size at birth, morphology, sex, and personalities can cause variability in behavior. As such, inherent inter-individual differences within populations may lead to context-dependent changes in behavior with animal body size, which is of concern for understanding population dynamics and optimizing ecological monitoring. Using stable carbon and nitrogen isotope values from concurrently sampled tissues, we quantified the direction and magnitude of intraspecific variation in trophic shifts among three shark species, and how these changed with body size: spurdogs (Squalus spp.) in deep-sea habitats off La Réunion, bull sharks (Carcharhinus leucas) in estuarine habitats of the Florida Everglades, and blacktip reef sharks (Carcharhinus melanopterus) in coral reef ecosystems of Moorea, French Polynesia. Intraspecific variation in trophic shifts was limited among spurdogs, and decreased with body size, while bull sharks exhibited greater individual differences in trophic shifts, but also decreased in variability through ontogeny. In contrast, blacktip reef sharks exhibited increased intraspecific variation in trophic interactions with body size. Variability in trophic interactions and ontogenetic shifts are known to be associated with changes in energetic requirements, but can vary with ecological context. Our results suggest that environmental stability may affect variability within populations, and ecosystems with greater spatial and/or temporal variability in environmental conditions, and those with more diverse food webs may facilitate greater individual differences in trophic interactions, and thus ontogenetic trophic shifts. In light of concerns over environmental disturbance, elucidating the contexts that promote or dampen phenotypic variability is invaluable for predicting population- and community-level responses to environmental changes.


Assuntos
Ecossistema , Tubarões , Animais , Florida , Individualidade , Polinésia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...