Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 891: 164280, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271391

RESUMO

Extended chemical analyses of fluvial sediments were undertaken to establish the key pollutant pressures and mixtures present across nine European Union inland waterways. A wide range of chemical components and physical parameters were investigated including substances from the EU Priority List and Watch List. The data set was examined for key indicator compounds, however it was found that a wide range of pollution pressures were present in the different sediments including organic hydrocarbons, metal(loid)s, nutrients, polycyclic aromatic hydrocarbon (PAH), polychlorinated biphenyl (PCB) compounds, perfluoroalkyl and polyfluoroalkyl substances and pesticides, some of which exceeded regulatory guidance at different sampling points. The presence of such a wide range of compounds underpins the complex chemical composition of sediments that have acted as sinks for many decades absorbing contaminants from urban, industrial and agricultural sources. This dataset has been used to describe average overall toxicity of the sediments sampled, a calculation which was based on key components identified by Principal Component Analysis (PCA) and for those that had existing freshwater sediment regulatory values. A total of 33 components were used including PCBs, PAHs, metal(iod)s and pesticides. This analysis reflected the contamination of each site, with most indicating some level of toxicity during the sampling period. Watch List chemicals triclosan (TCS) and diclofenac (DIC) were also investigated; levels were relatively low, typically 10-100's ng L-1, however they were present at all sampling sites. The dataset is available as a resource for future chemical, and toxicological, sediment analysis comparisons.

2.
Chemosphere ; 88(5): 650-4, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22490126

RESUMO

Typical burnt smell often results from fire accidents or in general from incomplete combustion. Recently, eleven compounds were identified, which are basically responsible for this odour. When analyzing residual materials from different fire accidents, the pattern that means the relative ratios of these compounds among each other varies strongly, although always causing a burnt smelling. Consequently, lab-scale combustion experiments were performed in order to investigate the influence of defined materials from domestic environment on the burnt-smell fingerprints. Furthermore, the occurrence of other polar and higher molecular combustion products was studied. It was found that under good combustion conditions, the burnt smell patterns resulting from the single materials were astonishingly consistent, mostly dominated by methylphenols or naphthalene. No correlation could be found between these 'fingerprints' and combustion product groups identified by GC/MS-screenings. LC/MS/MS-measurements especially pointed at the existence of higher molecular weight phenolic and acidic functionalized compounds in the combustion residues.


Assuntos
Odorantes/análise , Compostos Orgânicos/química , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Peso Molecular , Espectrometria de Massas em Tandem , Volatilização
3.
Anal Bioanal Chem ; 395(6): 1853-65, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19730832

RESUMO

The components responsible for the typical burnt smell that occurs after accidental fires (e.g. in buildings) were identified. For this purpose, samples of odorous materials were taken from different real fire sites. Their volatile fractions were analysed by means of thermal desorption, headspace analysis and solid-phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC/MS). Measurements performed with SPME gave the highest number of analytes as well as the highest signal intensities. A divinylbenzene/carboxen/polydimethylsiloxane SPME fibre was found to be the most suitable for this task. To distinguish the odour-active compounds from the ca. 1,400 identified volatiles concentrated by SPME, an olfactory detection port was attached to the GC/MS and the column effluent was assessed by panellists. The results revealed that eleven odorous compounds were present in most of the investigated samples: acetophenone, benzyl alcohol, 4-ethyl-2-methoxyphenol, 2-hydroxybenzaldehyde, 2-hydroxy-5-methylbenzldehyde, 2-methoxyphenol, 2-methoxy-4-methylphenol, 2-methylphenol, 3-methylphenol, 4-methylphenol and naphthalene. Their odour activities were confirmed in additional olfactory experiments, and the relative ratios of these eleven compounds were determined. Based on these ratios, standard solutions that presented an intense odour with typical characteristics of the burnt smell were produced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...