Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(12): 1760-1766, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116421

RESUMO

A high-throughput fragment-based screen has been employed to discover a series of quinazolinone inositol hexakisphosphate kinase (IP6K) inhibitors. IP6Ks have been studied for their role in glucose homeostasis, metabolic disease, fatty liver disease, chronic kidney disease, blood coagulation, neurological development, and psychiatric disease. IP6Ks phosphorylate inositol hexakisphosphate (IP6) to form pyrophosphate 5-diphospho-1,2,3,4,6-pentakisphosphate (IP7). Molecular docking studies and investigation of structure-activity relationships around the quinazolinone core resulted in compounds with submicromolar potency and interesting selectivity for IP6K1 versus the closely related IP6K2 and IP6K3 isoforms.

2.
Biomolecules ; 13(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759717

RESUMO

Inositol is a unique biological small molecule that can be phosphorylated or even further pyrophosphorylated on each of its six hydroxyl groups. These numerous phosphorylation states of inositol along with the kinases and phosphatases that interconvert them comprise the inositol phosphate signaling pathway. Inositol hexakisphosphate kinases, or IP6Ks, convert the fully mono-phosphorylated inositol to the pyrophosphate 5-IP7 (also denoted IP7). There are three isoforms of IP6K: IP6K1, 2, and 3. Decades of work have established a central role for IP6Ks in cell signaling. Genetic and pharmacologic manipulation of IP6Ks in vivo and in vitro has shown their importance in metabolic disease, chronic kidney disease, insulin signaling, phosphate homeostasis, and numerous other cellular and physiologic processes. In addition to these peripheral processes, a growing body of literature has shown the role of IP6Ks in the central nervous system (CNS). IP6Ks have a key role in synaptic vesicle regulation, Akt/GSK3 signaling, neuronal migration, cell death, autophagy, nuclear translocation, and phosphate homeostasis. IP6Ks' regulation of these cellular processes has functional implications in vivo in behavior and CNS anatomy.

3.
ACS Pharmacol Transl Sci ; 4(2): 780-789, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860201

RESUMO

Inositol hexakisphosphate kinases (IP6Ks) catalyze pyrophosphorylation of inositol hexakisphosphate (IP6) into inositol 5-diphospho-1,2,3,4,6-pentakisphosphate (IP7), which is involved in numerous areas of cell physiology including glucose homeostasis, blood coagulation, and neurological development. Inhibition of IP6Ks may be effective for the treatment of Type II diabetes, obesity, metabolic complications, thrombosis, and psychiatric disorders. We performed a high-throughput screen (HTS) of 158 410 compounds for IP6K1 inhibitors using a previously developed ADP-Glo Max assay. Of these, 1206 compounds were found to inhibit IP6K1 kinase activity by more than 25%, representing a 0.8% hit rate. Structural clustering analysis of HTS-active compounds, which were confirmed in the dose-response testing using the same kinase assay, revealed diverse clusters that were feasible for future structure-activity relationship (SAR) optimization to potent IP6K inhibitors. Medicinal chemistry SAR efforts in three chemical series identified potent IP6K1 inhibitors which were further validated in an orthogonal LC-MS IP7 analysis. The effects of IP6K1 inhibitors on cellular IP7 levels were further confirmed and were found to correlate with cellular IP6K1 binding measured by a high-throughput cellular thermal shift assay (CETSA).

4.
J Org Chem ; 82(13): 6895-6903, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28614656

RESUMO

Carboxylate groups are ubiquitous in bioactive molecules. The syntheses of carboxylates from petroleum feedstock require a series of oxidation reactions. CO2 represents a cheap and sustainable, preoxidized C1 source. Herein, we describe a simple, selective, and mild procedure for the construction of (hetero)cyclic α,ß-unsaturated carboxylic acids from 1,6- and 1,7-enyes and CO2. Terminal 1,7-enynes and sterically hindered alkenes experience a change in regioselectivity and form unconjugated carboxylic acids. Mechanistic studies of the reductive cyclization suggest a hydride insertion pathway, explaining the change in regioselectivity caused by steric effects and distinguishing this work from previous reactions involving CO2.


Assuntos
Dióxido de Carbono/química , Níquel/química , Catálise , Ciclização , Isomerismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...