Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 334: 11-20, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33823220

RESUMO

Peptide and protein therapeutics generally exhibit high potency and specificity and are increasingly important segments of the pharmaceutical market. However, their clinical applications are limited by rapid clearance and poor membrane permeability. Encapsulation of the peptide or protein into a nano-scale carrier can modify its pharmacokinetics and biodistribution. This might be employed to promote uptake in desired cell types or tissues, to limit systemic exposure, or to reduce the need for frequent injections. We have recently described inverse Flash NanoPrecipitation (iFNP), a scalable technique to encapsulate water-soluble therapeutics into polymeric nanocarriers, and have demonstrated improvements in therapeutic loading of an order of magnitude over comparable approaches. Here, we describe the formulation parameters that control release rates of encapsulated model therapeutics polymyxin B, lysozyme, and bovine serum albumin from nanocarriers produced using iFNP. Using a neutropenic lung infection mouse model with a multi-drug resistant Acinetobacter baumannii clinical isolate, we demonstrate enhanced therapeutic effect and safety profile afforded by nanocarrier-encapsulated polymyxin B following pulmonary administration. The encapsulated formulation reduced toxicity observed at elevated doses and resulted in up to 2.7-log10 reduction in bacterial burden below that of unencapsulated polymyxin B. These results establish the promise of iFNP as a platform for nanocarrier delivery of water-soluble therapeutics.


Assuntos
Nanopartículas , Animais , Preparações de Ação Retardada , Portadores de Fármacos , Camundongos , Peptídeos , Polímeros , Distribuição Tecidual
2.
AAPS J ; 22(2): 18, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31897899

RESUMO

The encapsulation of water-soluble therapeutics and biologics into nanocarriers to produce novel therapeutics has been envisioned for decades, but clinical translation has been hampered by complex synthesis strategies. The methods that have been developed are often limited by poor encapsulation efficiency/loading or complex processing to achieve therapeutic loadings high enough to be medically relevant. To address this unmet need, we introduce a solubility-driven self-assembly process to form polymeric nanocarriers comprising a biologic in a hydrophilic core, encapsulated by a poly(lactic acid) shell, and stabilized by a poly(ethylene glycol) brush. Called "inverse Flash NanoPrecipitation (iFNP)," the technique achieves biologic loadings (wt% of total formulation) that are 5-15× higher than typical values (9-27% versus < 2%). In contrast to liposomes and polymersomes, we sequentially assemble the polymer layers to form the final nanocarrier. Installation of the poly(lactic acid) shell before water exposure sequesters the biologic in the core and results in the improved loadings that are achieved. We demonstrate the broad applicability of the process and illustrate its implementation by formulating over a dozen different oligosaccharides, antibiotics, peptides, proteins, and RNA into nanocarriers with narrow size distributions, at high loadings, and with high reproducibility. Lysozyme and horseradish peroxidase are shown to retain 99% activity after processing. These results demonstrate the potential for commercial implementation of this technology, enabling the translation of novel treatments in immunology, oncology, or enzyme therapies.


Assuntos
Produtos Biológicos/química , Portadores de Fármacos , Nanopartículas , Nanotecnologia , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Precipitação Química , Composição de Medicamentos , Estabilidade de Medicamentos , Tamanho da Partícula , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...