Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38930163

RESUMO

The demand for strengthening reinforced concrete (RC) structures has increased considerably. Implementing carbon-fiber-reinforced polymer (CFRP) bars and concrete jacketing are the most effective techniques for RC beam retrofitting. Using the mechanical anchorage system (MAS) to attach CFRP bars to old concrete is highly recommended to avoid any debonding when it is applied to cyclic loads. However, the design of strengthening details is the most challenging issue because it involves many effective parameters. In this study, a design process for strengthening beams using CFRP bars with new MASs and concrete jacketing is proposed, and various design schemes are studied. The number of applied MASs and the thickness and grade of the concrete jacket were investigated through experimental testing and finite element (FE) simulations to define strengthening design details, such as the number and size of employed CFRP bars. Accordingly, an analytical technique was formulated to predict the performance of the strengthened beam in terms of the nominal ultimate load. The results demonstrated the high performance of the proposed system in preventing premature debonding. The proposed system enhances the beam capacity from 44 kN to 83 kN, representing an increase of more than 90%. In contrast, the conventional near-surface mounted (NSM) system exhibits a lower percentage increase at less than 37%. Both FE simulations and analytical approaches can be effectively employed to predict the behavior and capacity of the strengthened beam while considering various design parameters.

2.
PLoS One ; 18(8): e0290248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590241

RESUMO

Coulomb friction is considered as a mechanical approach to diminish the structural responses during the excitations. However, in case of severe oscillations supplementary mechanisms are employed besides the friction to mitigate the destructive effects of the vibrations in structures. Therefore, the main goal of this research is to develop a new Hybrid System (HS) which is a parallel combination of Viscous Damping (VD) and Coulomb friction for structures subjected to dynamic load. To achieve this goal, the effect of viscous damper is embedded in the equation of motion which is proposed by Den Hartog for a Single-Degree-of-Freedom (SDOF) Coulomb system, and has been extensively implemented for past few decades. In the considered numerical example in this study, implementing the proposed HDM in system resulted in decreasing the maximum displacement in the range of 1% to 98% for different amounts of force amplitude and viscous damping ratios. Also, applying the proposed HDM increased the time lag for about up to 24% for the frequency ratios greater than 1. The developed hybridized system in this study can be utilised as new generation of Tuned Mass Damper (TMD) to improve their energy dissipating efficiency under severe excitations.


Assuntos
Vibração , Fricção , Movimento (Física)
3.
PLoS One ; 18(6): e0286977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37319269

RESUMO

This paper presents a numerical and experimental assessment of a developed adjustable variable stiffness restrainer (AVSR) utilized for short span bridges. This restrainer has the ability to demonstrate multi stiffness capacity in different stages of bridge's superstructure movement to mitigate the severe damage of bridge due to an earthquake. The multi-level stiffness behavior of developed AVSR is achieved by using multiple mechanical springs with different lengths and placed in parallel in proposed design. A small prototype of developed AVSR has been fabricated and tested under incremental and cyclic loading in order to assess the restrainer performance and the behavior has been validated using finite element analysis. Thereafter, the constitutive model of AVSR was derived for the proposed restrainer in order to implement it in numerical simulations. Furthermore, a parametric study has been conducted numerically to evaluate the effectiveness of different parameters on the restrainer capacity. Moreover, the efficiency of AVSR application in a single degree of freedom system has been assessed by performing seismic analysis on a frame equipped with AVSR subjected to different seismic excitations using Newmark's method. The experimental and finite element results proved the efficiency of developed variable stiffness device to exhibit adjustable action against imposed loads in three designed stages. Furthermore, the parametric study results revealed that increasing the section area of the spring wire leads to increase the restrainer capacity. In contrast, the restrainer resistance is declined by an increase in the mean spring diameter and number of coils for each spring of AVSR. The time history analysis results also indicated that the frame response in terms of displacement, velocity and acceleration is improved by implementing the AVSR in the considered system.


Assuntos
Terremotos , Análise de Elementos Finitos , Fases de Leitura
4.
Materials (Basel) ; 13(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182531

RESUMO

The use of fibers in cementitious composites yields numerous benefits due to their fiber-bridging capabilities in resisting cracks. Therefore, this study aimed to improve the shear-resisting capabilities of conventional concrete through the hybridization of multiple synthetic fibers, specifically on reinforced concrete structures in seismic-prone regions. For this study, 16 hybrid fiber-reinforced concretes (HyFRC) were developed from the different combinations of Ferro macro-synthetic fibers with the Ultra-Net, Super-Net, Econo-Net, and Nylo-Mono microfibers. These hybrids were tested under direct shear, resulting in improved shear strength of controlled specimens by Ferro-Ultra (32%), Ferro-Super (24%), Ferro-Econo (44%), and Ferro-Nylo (24%). Shear energy was further assessed to comprehend the effectiveness of the fiber interactions according to the mechanical properties, dosage, bonding power, manufactured material, and form of fibers. Conclusively, all fiber combinations used in this study produced positive synergistic effects under direct shear at large crack deformations.

5.
PLoS One ; 15(11): e0238654, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33147216

RESUMO

Towers are important structures for installing radio equipment to emit electromagnetic waves that allow radio, television and/or mobile communications to function. Feasibility, cost, and speed of the construction are considered in the design process as well as providing stability and functionality for the communication tower. This study proposes the new design for construction of segmental tubular section communication tower with ultra-high-performance fibre concrete (UHPFC) material and prestress tendon to gain durability, ductility, and strength. The proposed mix design for UHPFC in this study which used for construction of communication tower is consisted of densified Silica Fume, Silica fine and coarse Sand and hooked-ends Steel Fiber. The prestressed tendon is used in the tower body to provide sufficient strength against the lateral load. The proposed design allows the tower to be built with three precast segments that are connected using bolts and nuts. This paper presents a novel method of construction and installation of the communication tower. The advantages of proposed design and construction process include rapid casting of the precast segment for the tower and efficient installation of segments in the project. The use of UHPFC material with high strength and prestress tendon can reduce the size and thickness of the tower as well as the cost of construction. Notably, this material can also facilitate the construction and installation procedure.


Assuntos
Materiais de Construção , Telecomunicações/instrumentação , Força Compressiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...