Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1144, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864018

RESUMO

Khufu's Pyramid is one of the largest archaeological monument all over the world, which still holds many mysteries. In 2016 and 2017, the ScanPyramids team reported on several discoveries of previously unknown voids by cosmic-ray muon radiography that is a non-destructive technique ideal for the investigation of large-scale structures. Among these discoveries, a corridor-shaped structure has been observed behind the so-called Chevron zone on the North face, with a length of at least 5 meters. A dedicated study of this structure was thus necessary to better understand its function in relation with the enigmatic architectural role of this Chevron. Here we report on new measurements of excellent sensitivity obtained with nuclear emulsion films from Nagoya University and gaseous detectors from CEA, revealing a structure of about 9 m length with a transverse section of about 2.0 m by 2.0 m.

2.
Sci Rep ; 13(1): 2065, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739445

RESUMO

Obelisks presented an important element in the architecture of ancient Egypt. This research is concerned with the re-erection of an obelisk that belongs to the famous Pharoah Ramses II. It was found broken and was transported to the Grand Egyptian Museum for restoration and display. An observation of Ramses II Cartouche at the bottom side of the obelisk base inspired the authorities to provide an innovative architectural design to display the obelisk elevated. The supporting structure was designed to allow the visitors to walk underneath the obelisk and observe Ramses II's signature. The idea of elevating the obelisk presented several challenges including evaluating the obelisk's current condition, restoration and fixation methodology, structural stability, and uncertainties of material characteristics, amongst others. To control the obelisk deformations under lateral loading, state-of-the-art base isolators were introduced. For the task to be achieved, a multidisciplinary team including historians, conservators, archaeologists, architects, and engineers with different specialties was appointed. The team performed the task successfully and currently, the obelisk stands at the entrance piazza of the Grand Egyptian Museum representing the world's first elevated obelisk.

3.
Nature ; 552(7685): 386-390, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160306

RESUMO

The Great Pyramid, or Khufu's Pyramid, was built on the Giza plateau in Egypt during the fourth dynasty by the pharaoh Khufu (Cheops), who reigned from 2509 bc to 2483 bc. Despite being one of the oldest and largest monuments on Earth, there is no consensus about how it was built. To understand its internal structure better, we imaged the pyramid using muons, which are by-products of cosmic rays that are only partially absorbed by stone. The resulting cosmic-ray muon radiography allows us to visualize the known and any unknown voids in the pyramid in a non-invasive way. Here we report the discovery of a large void (with a cross-section similar to that of the Grand Gallery and a minimum length of 30 metres) situated above the Grand Gallery. This constitutes the first major inner structure found in the Great Pyramid since the nineteenth century. The void, named ScanPyramids' Big Void, was first observed with nuclear emulsion films installed in the Queen's chamber, then confirmed with scintillator hodoscopes set up in the same chamber and finally re-confirmed with gas detectors outside the pyramid. This large void has therefore been detected with high confidence by three different muon detection technologies and three independent analyses. These results constitute a breakthrough for the understanding of the internal structure of Khufu's Pyramid. Although there is currently no information about the intended purpose of this void, these findings show how modern particle physics can shed new light on the world's archaeological heritage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...