Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0286975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37307261

RESUMO

Genetic variations are a crucial source of germplasm heterogeneity, as they contribute to the development of new traits for plant breeding by offering an allele resource. Gamma rays have been widely used as a physical agent to produce mutations in plants, and their mutagenic effect has attracted much attention. Nonetheless, few studies have examined the whole mutation spectrum in large-scale phenotypic evaluations. To comprehensively investigate the mutagenic effects of gamma irradiation on lentils, biological consequences on the M1 generation and substantial phenotypic screening on the M2 generation were undertaken. Additionally, the study followed the selected mutants into the M3 generation to evaluate the agronomic traits of interest for crop improvement. Seeds of lentil variety Moitree were irradiated with a range of acute gamma irradiation doses (0, 100, 150, 200, 250, 300, and 350 Gy) to induce unique genetic variability. This research focused on determining the GR50 value while considering seedling parameters and examining the status of pollen fertility while comparing the effects of the gamma irradiation dosages. The GR50 value was determined to be 217.2 Gy using the seedling parameters. Pollens from untreated seed-grown plants were approximately 85% fertile, but those treated with the maximum dosage (350 Gy) were approximately 28% fertile. Numerous chlorophyll and morphological mutants were produced in the M2 generation, with the 300 Gy -treated seeds being the most abundant, followed by the 250 Gy -treated seeds. This demonstrated that an appropriate dosage of gamma rays was advantageous when seeking to generate elite germplasm resources for one or multiple traits. Selected mutants in the M3 generation showed improved agronomic traits, including plant height, root length, number of pods per plant, and yield per plant. These investigations will contribute to a comprehensive understanding of the mutagenic effects and actions of gamma rays, providing a basis for the selection and design of suitable mutagens. This will facilitate the development of more controlled mutagenesis protocols for plant breeding and help guide future research directions for crop improvement using radiation-induced mutation breeding techniques.


Assuntos
Lens (Planta) , Raios gama , Melhoramento Vegetal , Mutagênicos , Clorofila , Fenótipo
2.
Plants (Basel) ; 12(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36840110

RESUMO

In the scenario of global climate change, understanding how plants respond to drought is critical for developing future crops that face restricted water resources. This present study focuses on the role of WRKY transcription factors on drought tolerance in tomato, Solanum lycopersicum L., which is a significant vegetable crop. WRKY transcription factors are a group of proteins that regulate a wild range of growth and developmental processes in plants such as seed germination and dormancy and the stress response. These transcription factors are defined by the presence of a DNA-binding domain, namely, the WRKY domain. It is well-known that WRKY transcription factors can interact with a variety of proteins and therefore control downstream activities. It aims to simulate the effect of curcumin, a bioactive compound with regulatory capacity, on the protein-protein interaction events by WRKY transcription factors with an emphasis on drought stress. It was found that curcumin binds to WRKY with an energy of -11.43 kcal/mol with inhibitory concentration (Ki) 0.12 mM and has the potential to improve fruit quality and reinforce drought tolerance of S. lycopersicum, according to the results based on bioinformatics tools. The root means square deviation (RMSD) of the C-α, the backbone of 2AYD with ligand coupled complex, displayed a very stable structure with just a little variation of 1.89 Å. MD simulation trajectory of Cα atoms of 2AYD bound to Curcumin revealed more un-ordered orientation in PC1 and PC10 modes and more toward negative correlation from the initial 400 frames during PCA. Establishing the binding energies of the ligand-target interaction is essential in order to characterize the compound's binding affinity to the drought transcription factor. We think we have identified a phyto-agent called curcumin that has the potential to enhance the drought tolerance. Compared to the part of the mismatch repair-base technique that can be used to fix drought related genes, curcumin performed better in a drop-in crop yield over time, and it was suggested that curcumin is a potential candidate factor for improving drought tolerance in tomatoes, and it needs future validation by experiments in laboratory and field.

3.
Methods Mol Biol ; 2638: 67-91, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781636

RESUMO

Oil seed rape (Braasica napus L.) is ranked second among oil seed crops cultivated globally for edible oil for human, and seed cake for animal consumption. Recent genetic and genomics advancements highlighted the diversity that exists within B. napus, which is largely discovered using the most promising genetic markers called single nucleotide polymorphism (SNP). Their calling rate is also enhanced to ~100 folds after the continuous advancements in the next generation sequencing (NGS) technologies. As the high throughput of NGS resulted in multi-Giga bases data, the detailed quality control (QC) prior to downstream analyses is a pre-requisite. It mainly involved the removal of false positives, missing proportions, filtering of low-quality SNPs, and adjustments of minor-allele frequency and heterozygosity. After marker-trait association, for conformation of target SNPs, validations of SNPs can be performed using various methods, especially allele-specific PCR assay-based methods have been utilized for SNP genotyping of genes targeting agronomic traits and somaclonal variations occurred during transgenic studies. In the present study, the authors mainly argue on the genotypic progress, and pipelines/methods that are being used for detection, calling, filtering, and validation of SNPs. Also, insight is provided into the application of SNPs in linkage and association mapping, including QTL mapping and genome-wide association studies targeting mainly developmental traits related to the root system and plant architecture, flowering time, silique, and oil quality. Briefly, the present study provides the recent information and recommendations on the SNP genotyping methods and its applications, which can be useful for marker-assisted breeding in B. napus and other crops.


Assuntos
Brassica napus , Locos de Características Quantitativas , Humanos , Estudo de Associação Genômica Ampla/métodos , Brassica napus/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...