Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 6765, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317725

RESUMO

Shadoo belongs to the prion protein family, an evolutionary conserved and extensively studied family due to the implication of PrP in Transmissible Spongiform Encephalopathies. However, the biological function of these genes remains poorly understood. While Sprn-knockdown experiments suggested an involvement of Shadoo during mouse embryonic development, Sprn-knockout experiments in 129Pas/C57BL/6J or 129Pas/FVB/NCr mice did not confirm it. In the present study, we analyzed the impact of Sprn gene invalidation in a pure FVB/NJ genetic background, using a zinc finger nuclease approach. The in-depth analysis of the derived knockout transgenic mice revealed a significant increase in embryonic lethality at early post-implantation stages, a growth retardation of young Sprn-knockout pups fed by wild type mice and a lactation defect of Sprn-knockout females. Histological and transcriptional analyses of knockout E7.5 embryos, E14.5 placentas and G7.5 mammary glands revealed specific roles of the Shadoo protein in mouse early embryogenesis, tissue development and differentiation with a potential antagonist action between PrP and Shadoo. This study thus highlights the entanglement between the proteins of the prion family.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Proteínas do Tecido Nervoso/genética , Proteínas Priônicas/genética , Animais , Proteínas Ligadas por GPI , Humanos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Organogênese/genética , Doenças Priônicas/genética , Doenças Priônicas/patologia
2.
Biochem Biophys Res Commun ; 516(1): 258-263, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31230751

RESUMO

DNAJC2 protein, also known as ZRF1 or MPP11, acts both as chaperone and as chromatin regulator. It is involved in stem cell differentiation and its expression is associated with various cancer malignancies. However, the role of Dnajc2 gene during mouse embryogenesis has not been assessed so far. To this aim, we invalidated Dnajc2 gene in FVB/Nj mice using the CrispR/Cas9 approach. We showed that this invalidation leads to the early post-implantation lethality of the nullizygous embryos. Furthermore, using siRNAs against Dnajc2 in mouse 1-cell embryos, we showed that maternal Dnajc2 mRNAs may allow for the early preimplantation development of these embryos. Altogether, these data demonstrate for the first time the requirement of DNAJC2 for early mouse embryogenesis.


Assuntos
Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/embriologia , Chaperonas Moleculares/genética , Proteínas de Ligação a RNA/genética , Animais , Sistemas CRISPR-Cas , Implantação do Embrião , Perda do Embrião/genética , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Feminino , Deleção de Genes , Camundongos/genética , Gravidez
3.
PLoS Genet ; 13(4): e1006597, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376083

RESUMO

Neuropathies are neurodegenerative diseases affecting humans and other mammals. Many genetic causes have been identified so far, including mutations of genes encoding proteins involved in mitochondrial dynamics. Recently, the "Turning calves syndrome", a novel sensorimotor polyneuropathy was described in the French Rouge-des-Prés cattle breed. In the present study, we determined that this hereditary disease resulted from a single nucleotide substitution in SLC25A46, a gene encoding a protein of the mitochondrial carrier family. This mutation caused an apparent damaging amino-acid substitution. To better understand the function of this protein, we knocked out the Slc25a46 gene in a mouse model. This alteration affected not only the nervous system but also altered general metabolism, resulting in premature mortality. Based on optic microscopy examination, electron microscopy and on biochemical, metabolic and proteomic analyses, we showed that the Slc25a46 disruption caused a fusion/fission imbalance and an abnormal mitochondrial architecture that disturbed mitochondrial metabolism. These data extended the range of phenotypes associated with Slc25a46 dysfunction. Moreover, this Slc25a46 knock-out mouse model should be useful to further elucidate the role of SLC25A46 in mitochondrial dynamics.


Assuntos
Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas de Transporte de Fosfato/genética , Polineuropatias/genética , Proteômica , Substituição de Aminoácidos/genética , Animais , Bovinos , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Fenótipo , Polineuropatias/patologia , Polineuropatias/veterinária
4.
PLoS One ; 9(12): e113355, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25501353

RESUMO

Salmonids are generally considered to have a robust genetic sex determination system with a simple male heterogamety (XX/XY). However, spontaneous masculinization of XX females has been found in a rainbow trout population of gynogenetic doubled haploid individuals. The analysis of this masculinization phenotype transmission supported the hypothesis of the involvement of a recessive mutation (termed mal). As temperature effect on sex differentiation has been reported in some salmonid species, in this study we investigated in detail the potential implication of temperature on masculinization in this XX mal-carrying population. Seven families issued from XX mal-carrying parents were exposed from the time of hatching to different rearing water temperatures ((8, 12 and 18°C), and the resulting sex-ratios were confirmed by histological analysis of both gonads. Our results demonstrate that masculinization rates are strongly increased (up to nearly two fold) at the highest temperature treatment (18°C). Interestingly, we also found clear differences between temperatures on the masculinization of the left versus the right gonads with the right gonad consistently more often masculinized than the left one at lower temperatures (8 and 12°C). However, the masculinization rate is also strongly dependent on the genetic background of the XX mal-carrying families. Thus, masculinization in XX mal-carrying rainbow trout is potentially triggered by an interaction between the temperature treatment and a complex genetic background potentially involving some part of the genetic sex differentiation regulatory cascade along with some minor sex-influencing loci. These results indicate that despite its rather strict genetic sex determinism system, rainbow trout sex differentiation can be modulated by temperature, as described in many other fish species.


Assuntos
Mutação , Oncorhynchus mykiss/genética , Processos de Determinação Sexual , Diferenciação Sexual , Animais , Feminino , Temperatura Alta , Masculino , Modelos Genéticos , Oncorhynchus mykiss/fisiologia , Fenótipo , Razão de Masculinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...