Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 21(6): 1176-1190, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36779605

RESUMO

The recent SARS-CoV-2 pandemic has taught the world a costly lesson about the devastating consequences of viral disease outbreaks but also, the remarkable impact of vaccination in limiting life and economic losses. Vaccination against human Hepatitis B Virus (HBV), a major human pathogen affecting 290 million people worldwide, remains a key action towards viral hepatitis elimination by 2030. To meet this goal, the development of improved HBV antigens is critical to overcome non-responsiveness to standard vaccines based on the yeast-produced, small (S) envelope protein. We have recently shown that combining relevant immunogenic determinants of S and large (L) HBV proteins in chimeric antigens markedly enhances the anti-HBV immune response. However, the demand for cost-efficient, high-quality antigens remains challenging. This issue could be addressed by using plants as versatile and rapidly scalable protein production platforms. Moreover, the recent generation of plants lacking ß-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO), by CRISPR/Cas9 genome editing, enables production of proteins with "humanized" N-glycosylation. In this study, we investigated the impact of plant N-glycosylation on the immunogenic properties of a chimeric HBV S/L vaccine candidate produced in wild-type and FX-KO Nicotiana benthamiana. Prevention of ß-1,2-xylose and α-1,3-fucose attachment to the HBV antigen significantly increased the immune response in mice, as compared with the wild-type plant-produced counterpart. Notably, the antibodies triggered by the FX-KO-made antigen neutralized more efficiently both wild-type HBV and a clinically relevant vaccine escape mutant. Our study validates in premiere the glyco-engineered Nicotiana benthamiana as a substantially improved host for plant production of glycoprotein vaccines.


Assuntos
COVID-19 , Vírus da Hepatite B , Humanos , Animais , Camundongos , Vírus da Hepatite B/genética , Glicosilação , Nicotiana/genética , Sistemas CRISPR-Cas/genética , COVID-19/genética , SARS-CoV-2 , Vacinas contra Hepatite B/genética , Anticorpos Neutralizantes , Antígenos de Superfície da Hepatite B/genética
2.
Planta ; 255(3): 63, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142905

RESUMO

MAIN CONCLUSION: Lignan impregnation of the reaction zone wood protects against oxidative degradation by fungi. Traumatic resin canals may play roles in the underlying signal transduction, synthesis, and translocation of defense compounds. Tree defense against xylem pathogens involves both constitutive and induced phenylpropanoids and terpenoids. The induced defenses include compartmentalization of compromised wood with a reaction zone (RZ) characterized by polyphenol deposition, whereas the role of terpenoids has remained poorly understood. To further elucidate the tree-pathogen interaction, we profiled spatial patterns in lignan (low-molecular-weight polyphenols) and terpenoid content in Norway spruce (Picea abies) trees showing heartwood colonization by the pathogenic white-rot fungus Heterobasidion parviporum. There was pronounced variation in the amount and composition of lignans between different xylem tissue zones of diseased and healthy trees. Intact RZ at basal stem regions, where colonization is the oldest, showed the highest level and diversity of these compounds. The antioxidant properties of lignans obviously hinder oxidative degradation of wood: RZ with lignans removed by extraction showed significantly higher mass loss than unextracted RZ when subjected to Fenton degradation. The reduced diversity and amount of lignans in pathogen-compromised RZ and decaying heartwood in comparison to intact RZ and healthy heartwood suggest that α-conindendrin isomer is an intermediate metabolite in lignan decomposition by H. parviporum. Diterpenes and diterpene alcohols constituted above 90% of the terpenes detected in sapwood of healthy and diseased trees. A significant finding was that traumatic resin canals, predominated by monoterpenes, were commonly associated with RZ. The findings clarify the roles and fate of lignan during wood decay and raise questions about the potential roles of terpenoids in signal transduction, synthesis, and translocation of defense compounds upon wood compartmentalization against decay fungi.


Assuntos
Lignanas , Picea , Terpenos , Madeira , Xilema
3.
Sci Rep ; 10(1): 12679, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728087

RESUMO

Endogenous antimicrobial peptides (AMPs) are evolutionarily ancient factors of innate immunity, which are produced by all multicellular organisms and play a key role in their protection against infection. Red king crab (Paralithodes camtschaticus), also called Kamchatka crab, is widely distributed and the best known species of all king crabs belonging to the family Lithodidae. Despite their economic importance, the genetic resources of king crabs are scarcely known and no full-genome sequences are available to date. Therefore, analysis of the red king crab transcriptome and identification and characterization of its AMPs could potentially contribute to the development of novel antimicrobial drug candidates when antibiotic resistance has become a global health threat. In this study, we sequenced the P. camtschaticus transcriptomes from carapace, tail flap and leg tissues using an Illumina NGS platform. Libraries were systematically analyzed for gene expression profiles along with AMP prediction. By an in silico approach using public databases we defined 49 cDNAs encoding for AMP candidates belonging to diverse families and functional classes, including buforins, crustins, paralithocins, and ALFs (anti-lipopolysaccharide factors). We analyzed expression patterns of 27 AMP genes. The highest expression was found for Paralithocin 1 and Crustin 3, with more than 8,000 reads. Other paralithocins, ALFs, crustins and ubiquicidins were among medium expressed genes. This transcriptome data set and AMPs provide a solid baseline for further functional analysis in P. camtschaticus. Results from the current study contribute also to the future application of red king crab as a bio-resource in addition to its being a known seafood delicacy.


Assuntos
Anomuros/genética , Perfilação da Expressão Gênica/veterinária , Proteínas Citotóxicas Formadoras de Poros/genética , Animais , Proteínas de Artrópodes/genética , Simulação por Computador , Bases de Dados Genéticas , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Imunidade Inata , Análise de Sequência de RNA , Cauda/química
4.
Plant Biotechnol J ; 18(3): 631-643, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31373133

RESUMO

Sustainable production of biofuels from lignocellulose feedstocks depends on cheap enzymes for degradation of such biomass. Plants offer a safe and cost-effective production platform for biopharmaceuticals, vaccines and industrial enzymes boosting biomass conversion to biofuels. Production of intact and functional protein is a prerequisite for large-scale protein production, and extensive host-specific post-translational modifications (PTMs) often affect the catalytic properties and stability of recombinant enzymes. Here we investigated the impact of plant PTMs on enzyme performance and stability of the major cellobiohydrolase TrCel7A from Trichoderma reesei, an industrially relevant enzyme. TrCel7A was produced in Nicotiana benthamiana using a vacuum-based transient expression technology, and this recombinant enzyme (TrCel7Arec ) was compared with the native fungal enzyme (TrCel7Anat ) in terms of PTMs and catalytic activity on commercial and industrial substrates. We show that the N-terminal glutamate of TrCel7Arec was correctly processed by N. benthamiana to a pyroglutamate, critical for protein structure, while the linker region of TrCel7Arec was vulnerable to proteolytic digestion during protein production due to the absence of O-mannosylation in the plant host as compared with the native protein. In general, the purified full-length TrCel7Arec had 25% lower catalytic activity than TrCel7Anat and impaired substrate-binding properties, which can be attributed to larger N-glycans and lack of O-glycans in TrCel7Arec . All in all, our study reveals that the glycosylation machinery of N. benthamiana needs tailoring to optimize the production of efficient cellulases.


Assuntos
Celulose 1,4-beta-Celobiosidase/biossíntese , Proteínas Fúngicas/biossíntese , Nicotiana/metabolismo , Processamento de Proteína Pós-Traducional , Trichoderma/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/biossíntese
5.
Physiol Plant ; 120(3): 465-473, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15032844

RESUMO

Seedlings of Norway spruce were exposed to fungal infection and drought in order to investigate differences in their stress responses on the enzymatic level. Six-week-old seedlings were infected with the root rot fungus Rhizoctonia, or subjected to drought, respectively. Changes at the enzymatic level were more rapid and significantly higher in infected plants in comparison with drought-stressed spruce plants. Rhizoctonia infection resulted in early local and systemic increase in peroxidase and chitinase activity. The most prominent isoforms responding were highly basic peroxidases and chitinases (pI 9-9.5) and several acidic chitinases (pI3-4). An increased intensity of similar peroxidase isoforms was found in drought-affected plants. Two peroxidase isoforms (with pI < 9) accumulated exclusively in response to drought. These results suggest that at an early stage of infection and drought stress, the two stresses can be distinguished by the temporal appearance and isoform profile of peroxidases and chitinases. Changes in enzyme activity appeared before changes in physiological parameters, thus these isoform profiles could be used as early markers of stress conditions in spruce.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...