Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 17(10): 2737-2741, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33533371

RESUMO

We study the temperature-dependence of critical Casimir interactions in a critical micellar solution of the nonionic surfactant C12E5 dissolved in water. Experimentally, this is achieved with total internal reflection microscopy (TIRM) which measures the interaction between a single particle and a flat wall. For comparison, we also studied the pair interactions of a two dimensional layer of colloidal particles in the identical micellar system which yields good agreement with the TIRM results. Although, at the surfactant concentration considered here, the fluid forms a dynamical network of wormlike micelles whose structure is considerably more complex than that of simple critical molecular fluids, the temperature-dependence of the measured interactions is - for surface-to-surface distances above 160 nm - in excellent quantitative agreement with theory. Below 160 nm, deviations arise which we attribute to the adsorption of micelles to the interacting surfaces.

2.
Phys Rev Lett ; 120(18): 180604, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775331

RESUMO

Nonlinear response theory, in contrast to linear cases, involves (dynamical) details, and this makes application to many-body systems challenging. From the microscopic starting point we obtain an exact response theory for a small number of coarse-grained degrees of freedom. With it, an extrapolation scheme uses near-equilibrium measurements to predict far-from-equilibrium properties (here, second order responses). Because it does not involve system details, this approach can be applied to many-body systems. It is illustrated in a four-state model and in the near critical Ising model.

3.
Langmuir ; 32(51): 13752-13758, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27977214

RESUMO

Total internal reflection microscopy (TIRM) is a well-known technique to measure weak forces between colloidal particles suspended in a liquid and a solid surface by using evanescent light scattering. In contrast to typical TIRM experiments, which are carried out at liquid-solid interfaces, here we extend this method to liquid-liquid interfaces. Exemplarily, we demonstrate this concept by investigating the interactions of micrometer-sized polystyrene particles and oil droplets near a flat water-oil interface for different concentrations of added salt and ionic surfactant (SDS). We find that the interaction is well described by the superposition of van der Waals and double layer forces. Interestingly, the interaction potentials are, within the SDS concentration range studied here, rather independent of the surfactant concentration, which suggests a delicate counter play of different interactions at the oil-water interface and provides interesting insights into the mechanisms relevant for the stability of emulsions.

4.
Soft Matter ; 11(12): 2379-86, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25673057

RESUMO

We study the thermophoretic motion of a micron sized single colloidal particle in front of a flat wall by evanescent light scattering. To quantify thermophoretic effects we analyse the nonequilibrium steady state (NESS) of the particle in a constant temperature gradient perpendicular to the confining walls. We propose to determine thermophoretic forces from a "generalized potential" associated with the probability distribution of the particle position in the NESS. Experimentally we demonstrate, how this spatial probability distribution is measured and how thermophoretic forces can be extracted with 10 fN resolution. By varying temperature gradient and ambient temperature, the temperature dependence of Soret coefficient ST(T) is determined for r = 2.5 µm polystyrene and r = 1.35 µm melamine particles. The functional form of ST(T) is in good agreement with findings for smaller colloids. In addition, we measure and discuss hydrodynamic effects in the confined geometry. The theoretical and experimental technique proposed here extends thermophoresis measurements to so far inaccessible particle sizes and particle solvent combinations.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 1): 041113, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21599121

RESUMO

The study of microsystems and the development of nanotechnologies require alternative techniques to measure piconewton and femtonewton forces at microscopic and nanoscopic scales. Among the challenges is the need to deal with the ineluctable thermal noise, which, in the typical experimental situation of a spatial diffusion gradient, causes a spurious drift. This leads to a correction term when forces are estimated from drift measurements [G. Volpe, L. Helden, T. Brettschneider, J. Wehr, and C. Bechinger, Phys. Rev. Lett. 104, 170602 (2010)]. Here we provide a systematic study of such an effect by comparing the forces acting on various Brownian particles derived from equilibrium-distribution and drift measurements. We discuss the physical origin of the correction term, its dependence on wall distance and particle radius, and its relation to the convention used to solve the respective stochastic integrals. Such a correction term becomes more significant for smaller particles and is predicted to be on the order of several piconewtons for particles the size of a biomolecule.

6.
Phys Rev Lett ; 104(17): 170602, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20482099

RESUMO

We demonstrate how the ineluctable presence of thermal noise alters the measurement of forces acting on microscopic and nanoscopic objects. We quantify this effect exemplarily for a Brownian particle near a wall subjected to gravitational and electrostatic forces. Our results demonstrate that the force-measurement process is prone to artifacts if the noise is not correctly taken into account.

7.
Opt Express ; 17(26): 23975-85, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20052108

RESUMO

Total Internal Reflection Microscopy (TIRM) is a sensitive non-invasive technique to measure the interaction potentials between a colloidal particle and a wall with femtonewton resolution. The equilibrium distribution of the particle-wall separation distance z is sampled monitoring the intensity I scattered by the Brownian particle under evanescent illumination. Central to the data analysis is the knowledge of the relation between I and the corresponding z, which typically must be known a priori. This poses considerable constraints to the experimental conditions where TIRM can be applied (short penetration depth of the evanescent wave, transparent surfaces). Here, we introduce a method to experimentally determine I(z) by relying only on the distance-dependent particle-wall hydrodynamic interactions. We demonstrate that this method largely extends the range of conditions accessible with TIRM, and even allows measurements on highly reflecting gold surfaces where multiple reflections lead to a complex (z).


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia/métodos , Nefelometria e Turbidimetria/métodos , Aumento da Imagem
8.
Phys Rev Lett ; 101(20): 208301, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19113384

RESUMO

We investigate the behavior of colloidal particles immersed in a binary liquid mixture of water and 2,6-lutidine in the presence of a chemically patterned substrate. Close to the critical point of the mixture, the particles are subjected to critical Casimir interactions with force components normal and parallel to the surface. Because the strength and sign of these interactions can be tuned by variations in the surface properties and the mixtures temperature, critical Casimir forces allow the formation of highly ordered monolayers but also extend the use of colloids as model systems.

9.
Nature ; 454(7203): 501-4, 2008 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-18650921

RESUMO

Monolayers on crystalline surfaces often form complex structures with physical and chemical properties that differ strongly from those of their bulk phases. Such hetero-epitactic overlayers are currently used in nanotechnology and understanding their growth mechanism is important for the development of new materials and devices. In comparison with crystals, quasicrystalline surfaces exhibit much larger structural and chemical complexity leading, for example, to unusual frictional, catalytical or optical properties. Deposition of thin films on such substrates can lead to structures that may have typical quasicrystalline properties. Recent experiments have indeed showed 5-fold symmetries in the diffraction pattern of metallic layers adsorbed on quasicrystals. Here we report a real-space investigation of the phase behaviour of a colloidal monolayer interacting with a quasicrystalline decagonal substrate created by interfering five laser beams. We find a pseudomorphic phase that shows both crystalline and quasicrystalline structural properties. It can be described by an archimedean-like tiling consisting of alternating rows of square and triangular tiles. The calculated diffraction pattern of this phase is in agreement with recent observations of copper adsorbed on icosahedral Al(70)Pd(21)Mn(9) surfaces. In addition to establishing a link between archimedean tilings and quasicrystals, our experiments allow us to investigate in real space how single-element monolayers can form commensurate structures on quasicrystalline surfaces.

10.
Langmuir ; 24(1): 1-4, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18052301

RESUMO

Total internal reflection microscopy (TIRM) is a method for the precise measurement of interaction potentials between a spherical colloidal particle and a wall. The method is based on single-particle evanescent wave light scattering. The well-established model used to interpret TIRM data is based on an exponential relation between scattering intensity and particle wall distance. However, applying this model for a certain range of experimental parameters leads to significant distortions of the measured potentials. Using a TIRM setup based on a two-wavelength illumination technique, we were able to directly measure the intensity distance relation revealing deviations from an exponential decay. The intensity-distance relations could be compared to scattering simulations taking into account exact experimental parameters and multiple reflections between a particle and the wall. Converging simulation results were independently obtained by the T-matrix method and the discrete sources method (DSM) and show excellent agreement with experiments. Using the new scattering model for data evaluation, we could reconstruct the correct potential shape for distorted interaction potentials as we demonstrate. The comparison of simulations to experiment intrinsically yields a new method to determine absolute particle-wall distances, a highly desired quantity in TIRM experiments.

11.
Appl Opt ; 45(28): 7299-308, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16983418

RESUMO

We simulate and measure light scattering of a micrometer-sized spherical particle suspended in solution close to a glass substrate. The model, based on the discrete sources method, is developed to describe the experimental situation of total internal reflection microscopy experiments; i.e., the particle is illuminated by an evanescent light field originating from the glass-solvent interface. In contrast to the well-established assumption of a simple exponential decay of the scattering intensity with distance, we demonstrate significant deviations for a certain range of penetration depths and polarization states of the incident light.


Assuntos
Algoritmos , Coloides/química , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia/métodos , Refratometria/métodos , Simulação por Computador , Luz , Modelos Químicos , Tamanho da Partícula , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
12.
Langmuir ; 20(14): 5662-5, 2004 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16459575

RESUMO

We present direct depletion potential measurements for a single colloidal sphere close to a wall in suspensions of charged colloidal rods. In contrast to earlier studies of purely entropic systems (Helden et al. Phys. Rev. Lett. 2003, 90, 048301), here electrostatic interactions are important. These enhance the depletion attraction and lead to repulsive parts in the interaction potentials, indicating correlation effects between the rods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...