Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(26): 33625-33648, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650795

RESUMO

A sensor's spatial resolution has traditionally been a difficult concept to define, but all would agree that it is inextricably linked to the Ground Sampling Distance (GSD) and Instantaneous Field of View (IFOV) of an imaging sensor system. As a measure of the geospatial quality of imagery, the Modulation Transfer Function (MTF) of the system is often used along with the signal-to-noise ratio (SNR). However, their calculation is not fully standardized. Further, consistent measurements and comparisons are often hard to obtain. Therefore, in the Infrared and Visible Optical Sensors (IVOS) subgroup of the Working Group on Calibration Validation (WGCV) of the Committee for Earth Observation Satellites (CEOS), a team from various countries and professional entities who are involved in MTF measurement was established to address the issue of on-orbit MTF measurements and comparisons. As a first step, a blind comparison of MTF measurements based on the slanted edge approach has been undertaken. A set of both artificial and actual satellite edge images was developed and a first comparison of processing results was generated. In all, seven organizations contributed to the experiment and several significant results were generated in 2016. No single participant produced the best results for all test images as measured by either the closest to the mean result, or closest to the truth for the synthetic test images. In addition, close estimates of the MTF value at Nyquist did not ensure the accuracy of other MTF values at other spatial frequencies. Some algorithm results showed that the accuracy of their estimates depended upon the type of MTF curve that was being analyzed. After the initial analysis, participants were allowed to modify their methodology and reprocess the test images since, in several cases, the results contained errors. Results from the second iteration, in 2017, verified that the anomalies in the experiment's first iteration were due to errors in either coding or methodology, or both. One organization implemented a third trial to fix software errors. This emphasizes the importance of fully understanding both methodology and implementation, in order to ensure accurate and repeatable results. To extend this comparison study, a reference data set, which is composed of edge images and corresponding MTF curves, will be built. A broader audience will be able to access the edge images through the CEOS CalVal Portal (http://calvalportal.ceos.org/). This paper, which is associated with the reference data set, can serve as a new tool to either implement or check, or both, the MTF measurement that relies on the slanted edge method.

2.
Remote Sens Environ ; 185: 7-15, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29449747

RESUMO

Launched in February 2013, the Operational Land Imager (OLI) on-board Landsat 8 continues to perform exceedingly well and provides high science quality data globally. Several design enhancements have been made in the OLI instrument relative to prior Landsat instruments: pushbroom imaging which provides substantially improved Signal-to-Noise Ratio (SNR), spectral bandpasses refinement to avoid atmospheric absorption features, 12 bit data resolution to provide a larger dynamic range that limits the saturation level, a set of well-designed onboard calibrators to monitor the stability of the sensor. Some of these changes such as refinements in spectral bandpasses compared to earlier Landsats and well-designed on-board calibrator have a direct impact on the improved radiometric calibration performance of the instrument from both the stability of the response and the ability to track the changes. The on-board calibrator lamps and diffusers indicate that the instrument drift is generally less than 0.1% per year across the bands. The refined bandpasses of the OLI indicate that temporal uncertainty of better than 0.5% is possible when the instrument is trended over vicarious targets such as Pseudo Invariant Calibration Sites (PICS), a level of precision that was never achieved with the earlier Landsat instruments. The stability measurements indicated by on-board calibrators and PICS agree much better compared to the earlier Landsats, which is very encouraging and bodes well for the future Landsat missions too.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29599570

RESUMO

Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effect tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.31 W/m2 sr µm bias error. The updated lifetime trend is now stable to within +/- 0.4K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...