Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 109(12): 2213-2226, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34037321

RESUMO

To modulate the physicochemical features of poly(ethylene terephthalate) (PET) multifilaments surface composing a complex textile structure (core and shell system), intended to improve upon current implants for high extension injuries of the Achilles tendon or even for its total replacement, two surface treatments with different purposes (bioactive and biopassive) were studied. The first treatment is based on amino groups grafting using ethylenediamine molecules to be applied in the structure core to improve cell adhesion and proliferation. The other treatment relates to a polytetrafluoroethylene (PTFE) coating to be applied in the structure shell to decrease its coefficient of friction and avoid adhesions. Both treatments were optimized to reach their purposed goals without harming the tensile properties of PET yarns, which were evaluated by static tensile tests. The resazurin assay and scanning electron microscopy analysis showed that the purposed goals related to fibroblast adhesion were achieved for both treatments and in the case of PTFE coating, the abrasion resistance was also improved according to the yarn-on-yarn abrasion tests.


Assuntos
Polietilenotereftalatos , Têxteis , Etilenos , Fibroblastos , Ácidos Ftálicos
2.
J Nanosci Nanotechnol ; 10(4): 2444-50, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20355446

RESUMO

The crystallization behaviour of hybrid SiO2-TiO2 nanocomposites derived from titanosiloxanes by sol-gel method has been investigated depending on the type of siloxane precursor and the pirolysis temperature. The resulting hybrid titanosiloxanes, crosslinked with trimethylsilil isocyanate (nitrogen-modified) or methyltrietoxisilane (carbon-modified), were pirolyzed in an inert atmosphere in the temperature range between 600 to 1100 degrees C in order to form C-(N)-Si-O-TiO2 nanocomposites. By means of XRD, FTIR, 29Si NMR, SEM, TEM and AFM investigations have been established that the transformation of the nanostructured SiO2-TiO2 hybrid materials into nanocomposites as well as the crystalline size depend on the titanium content and the type of cross-linking agents used in the synthesizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA