Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(10): 7643-53, 2001 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-11116155

RESUMO

The budding yeast Saccharomyces cerevisiae has four inositol polyphosphate 5-phosphatase (5-phosphatase) genes, INP51, INP52, INP53, and INP54, all of which hydrolyze phosphatidylinositol (4,5)-bisphosphate. INP54 encodes a protein of 44 kDa which consists of a 5-phosphatase domain and a C-terminal leucine-rich tail, but lacks the N-terminal SacI domain and proline-rich region found in the other three yeast 5-phosphatases. We report that Inp54p belongs to the family of tail-anchored proteins and is localized to the endoplasmic reticulum via a C-terminal hydrophobic tail. The hydrophobic tail comprises the last 13 amino acids of the protein and is sufficient to target green fluorescent protein to the endoplasmic reticulum. Protease protection assays demonstrated that the N terminus of Inp54p is oriented toward the cytoplasm of the cell, with the C terminus of the protein also exposed to the cytosol. Null mutation of INP54 resulted in a 2-fold increase in secretion of a reporter protein, compared with wild-type yeast or cells deleted for any of the SacI domain-containing 5-phosphatases. We propose that Inp54p plays a role in regulating secretion, possibly by modulating the levels of phosphatidylinositol (4,5)-bisphosphate on the cytoplasmic surface of the endoplasmic reticulum membrane.


Assuntos
Retículo Endoplasmático/metabolismo , Monoéster Fosfórico Hidrolases/biossíntese , Sequência de Aminoácidos , Membrana Celular/metabolismo , Clonagem Molecular , Citoplasma/metabolismo , Proteínas de Fluorescência Verde , Inositol Polifosfato 5-Fosfatases , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Água/metabolismo
2.
J Bioenerg Biomembr ; 29(1): 71-80, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9067804

RESUMO

As part of the ongoing studies aimed at elucidating the mechanism of the energy conserving function of mitochondrial complex I, NADH: ubiquinone (Q) reductase, we have investigated how short-chain Q analogs activate the proton pumping function of this complex. Using a pH-sensitive fluorescent dye we have monitored both the extent and initial velocity of proton pumping of complex I in submitochondrial particles. The results are consistent with two sites of interaction of Q analogs with complex I, each having different proton pumping capacity. One is the physiological site which leads to a rapid proton pumping and a stoichiometric consumption of NADH associated with the reduction of the most hydrophobic Q analogs. Of these, heptyl-Q appears to be the most efficient substrate in the assay of proton pumping. Q analogs with a short-chain of less than six carbons interact with a second site which drives a slow proton pumping activity associated with NADH oxidation that is overstoichiometric to the reduced quinone acceptor. This activity is also nonphysiological, since hydrophilic Q analogs show little or no respiratory control ratio of their NADH:Q reductase activity, contrary to hydrophobic Q analogs.


Assuntos
Mitocôndrias/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Bombas de Próton/efeitos dos fármacos , Ubiquinona/análogos & derivados , Aminoacridinas/química , Ativação Enzimática , Corantes Fluorescentes/química , Mitocôndrias/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/efeitos dos fármacos , Ubiquinona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...