Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38247496

RESUMO

The photoperiod is the main environmental cue that drives seasonal adaptive responses in reproduction, behavior, and metabolism in seasonal animals. Increasing evidence suggests that (poly)phenols contained in fruits can also modulate seasonal rhythms. (Poly)phenol-rich diets are associated with an improvement in cognitive function and neuroprotection due to their anti-inflammatory and antioxidative properties. However, it is unknown whether cherries affect neuroprotection in a photoperiod-dependent manner. To test this, F344 rats were exposed to L6 (6 h light/day), L12 (12 h light/day) and L18 (18 h light/day) photoperiods and fed a standard chow diet supplemented with either a control, lyophilized cherry 1 or cherry 2 with distinctive phenolic hallmarks. Physiological parameters (body weight, eating pattern index (EPI), testosterone, T4/T3) and hypothalamic key genes (Dio2, Dio3, Raldh1 and Ghrh) were strongly regulated by the photoperiod and/or fruit consumption. Importantly, we show for the first time that neurotrophs (Bdnf, Sod1 and Gpx1) in the hippocampus are also regulated by the photoperiod. Furthermore, the consumption of cherry 2, which was richer in total flavonols, but not cherry 1, which was richer in total anthocyanins and flavanols, enhanced neuroprotection in the hippocampus. Our results show that the seasonal consumption of cherry with a specific phenolic composition plays an important role in the hippocampal activation of neuroprotection in a photoperiod-dependent manner.

2.
3.
Front Physiol ; 13: 897105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711300

RESUMO

Chemerin is an adipokine involved in inflammation, adipogenesis, angiogenesis and energy metabolism, and has been hypothesized as a link between obesity and type II diabetes. In humans affected by obesity, chemerin gene expression in peripheral tissues and circulating levels are elevated. In mice, plasma levels of chemerin are upregulated by high-fat feeding and gain and loss of function studies show an association of chemerin with body weight, food intake and glucose homeostasis. Therefore, chemerin is an important blood-borne mediator that, amongst its other functions, controls appetite and body weight. Almost all studies of chemerin to date have focused on its release from adipose tissue and its effects on peripheral tissues with the central effects largely overlooked. To demonstrate a central role of chemerin, we manipulated chemerin signaling in the hypothalamus, a brain region associated with appetite regulation, using pharmacological and genetic manipulation approaches. Firstly, the selective chemerin receptor CMKLR1 antagonist α-NETA was administered i.c.v. to rats to test for an acute physiological effect. Secondly, we designed a short-hairpin-RNA (shRNA) lentivirus construct targeting expression of CMKLR1. This shRNA construct, or a control construct was injected bilaterally into the arcuate nucleus of male Sprague Dawley rats on high-fat diet (45%). After surgery, rats were maintained on high-fat diet for 2 weeks and then switched to chow diet for a further 2 weeks. We found a significant weight loss acutely and inhibition of weight gain chronically. This difference became apparent after diet switch in arcuate nucleus-CMKLR1 knockdown rats. This was not accompanied by a difference in blood glucose levels. Interestingly, appetite-regulating neuropeptides remained unaltered, however, we found a significant reduction of the inflammatory marker TNF-α suggesting reduced expression of CMKLR1 protects from high-fat diet induced neuroinflammation. In white and brown adipose tissue, mRNA expression of chemerin, its receptors and markers of adipogenesis, lipogenesis and brown adipocyte activation remained unchanged confirming that the effects are driven by the brain. Our behavioral analyses suggest that knockdown of CMKLR1 had an impact on object recognition. Our data demonstrate that CMKLR1 is functionally important for the central effects of chemerin on body weight regulation and neuroinflammation.

4.
Physiol Behav ; 239: 113496, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118272

RESUMO

In many species, seasonal changes in day length (photoperiod) have profound effects on physiology and behavior. In humans, these include cognitive function and mood. Here we investigated the effect of photoperiod and high fat diets on cognitive deficits, as measured by novel object recognition, in the photoperiod-sensitive F344 rat, which exhibits marked natural changes in growth, body weight and food intake in response to photoperiod. 32 male juvenile F344 rats were housed in either long or short photoperiod and fed either a high fat or nutrient-matched chow diet. Rats were tested in the novel object recognition test before photoperiod and diet intervention and re-tested 28 days after intervention. In both tests during the acquisition trials there was no significant difference in exploration levels of the left and right objects in the groups. Before intervention, all groups showed a significant increase in exploration of the novel object compared to the familiar object. However, following the photoperiod and diet interventions the retention trial revealed that only rats in the long photoperiod-chow group explored the novel object significantly more than the familiar object, whereas all other groups showed no significant preference. These results suggest that changing rats to short photoperiod impairs their memory regardless of diet. The cognitive performance of rats on long photoperiod-chow remained intact, whereas the high fat diet in the long photoperiod group induced a memory impairment. In conclusion, our study suggests that photoperiod and high fat diet have an impact on object recognition in photoperiod-sensitive F344 rats.


Assuntos
Dieta Hiperlipídica , Fotoperíodo , Animais , Peso Corporal , Cognição , Dieta Hiperlipídica/efeitos adversos , Masculino , Ratos , Ratos Endogâmicos F344
5.
Nat Commun ; 12(1): 2288, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863883

RESUMO

Hypothalamic tanycytes in median eminence (ME) are emerging as a crucial cell population that regulates endocrine output, energy balance and the diffusion of blood-born molecules. Tanycytes have recently been considered as potential somatic stem cells in the adult mammalian brain, but their regenerative and tumorigenic capacities are largely unknown. Here we found that Rax+ tanycytes in ME of mice are largely quiescent but quickly enter the cell cycle upon neural injury for self-renewal and regeneration. Mechanistically, Igf1r signaling in tanycytes is required for tissue repair under injury conditions. Furthermore, Braf oncogenic activation is sufficient to transform Rax+ tanycytes into actively dividing tumor cells that eventually develop into a papillary craniopharyngioma-like tumor. Together, these findings uncover the regenerative and tumorigenic potential of tanycytes. Our study offers insights into the properties of tanycytes, which may help to manipulate tanycyte biology for regulating hypothalamic function and investigate the pathogenesis of clinically relevant tumors.


Assuntos
Craniofaringioma/patologia , Células Ependimogliais/fisiologia , Eminência Mediana/fisiologia , Neoplasias Experimentais/patologia , Regeneração , Animais , Carcinogênese/patologia , Autorrenovação Celular/fisiologia , Craniofaringioma/induzido quimicamente , Craniofaringioma/genética , Proteínas do Olho/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Eminência Mediana/citologia , Camundongos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Proteínas Proto-Oncogênicas B-raf/genética , RNA-Seq , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Análise de Célula Única , Fatores de Transcrição/metabolismo
6.
Mol Cell Endocrinol ; 514: 110876, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32473184

RESUMO

Seasonal rhythms in energy balance are well documented across temperate and equatorial zones animals. The long-term regulated changes in seasonal physiology consists of a rheostatic system that is essential to successful time annual cycles in reproduction, hibernation, torpor, and migration. Most animals use the annual change in photoperiod as a reliable and robust environmental cue to entrain endogenous (i.e. circannual) rhythms. Research over the past few decades has predominantly examined the role of first order neuroendocrine peptides for the rheostatic changes in energy balance. These anorexigenic and orexigenic neuropeptides in the arcuate nucleus include neuropeptide y (Npy), agouti-related peptide (Agrp), cocaine and amphetamine related transcript (Cart) and pro-opiomelanocortin (Pomc). Recent studies also indicate that VGF nerve growth factor inducible (Vgf) in the arcuate nucleus is involved in the seasonal regulation of energy balance. In situ hybridization, qPCR and RNA-sequencing studies have identified that Pomc expression across fish, avian and mammalian species, is a neuroendocrine marker that reflects seasonal energetic states. Here we highlight that long-term changes in arcuate Pomc and Vgf expression is conserved across species and may provide rheostatic regulation of seasonal energy balance.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Neuropeptídeos/metabolismo , Pró-Opiomelanocortina/farmacologia , Proteína Relacionada com Agouti/farmacologia , Proteína Relacionada com Agouti/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Proteínas do Tecido Nervoso/fisiologia , Neuropeptídeo Y/farmacologia , Neuropeptídeo Y/fisiologia , Neuropeptídeos/efeitos dos fármacos , Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/metabolismo
7.
J Neuroendocrinol ; 31(3): e12680, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30585661

RESUMO

Animals have evolved diverse seasonal variations in physiology and reproduction to accommodate yearly changes in environmental and climatic conditions. These changes in physiology are initiated by changes in photoperiod (daylength) and are mediated through melatonin, which relays photoperiodic information to the pars tuberalis of the pituitary gland. Melatonin drives thyroid-stimulating hormone transcription and synthesis in the pars tuberalis, which, in turn, regulates thyroid hormone and retinoic acid synthesis in the tanycytes lining the third ventricle of the hypothalamus. Seasonal variation in central thyroid hormone signalling is conserved among photoperiodic animals. Despite this, different species adopt divergent phenotypes to cope with the same seasonal changes. A common response amongst different species is increased hypothalamic cell proliferation/neurogenesis in short photoperiod. That cell proliferation/neurogenesis may be important for seasonal timing is based on (i) the neurogenic potential of tanycytes; (ii) the fact that they are the locus of striking seasonal morphological changes; and (iii) the similarities to mechanisms involved in de novo neurogenesis of energy balance neurones. We propose that a decrease in hypothalamic thyroid hormone and retinoic acid signalling initiates localised neurodegeneration and apoptosis, which leads to a reduction in appetite and body weight. Neurodegeneration induces compensatory cell proliferation from the neurogenic niche in tanycytes and new cells are born under short photoperiod. Because these cells have the potential to differentiate into a number of different neuronal phenotypes, this could provide a mechanistic basis to explain the seasonal regulation of energy balance, as well as reproduction. This cycle can be achieved without changes in thyroid hormone/retinoic acid and explains recent data obtained from seasonal animals held in natural conditions. However, thyroid/retinoic acid signalling is required to synchronise the cycles of apoptosis, proliferation and differentiation. Thus, hypothalamic neurogenesis provides a framework to explain diverse photoperiodic responses.


Assuntos
Adaptação Fisiológica , Peso Corporal/fisiologia , Fenômenos Cronobiológicos , Modelos Neurológicos , Hipófise/metabolismo , Reprodução , Animais , Regulação do Apetite , Metabolismo Energético , Células Ependimogliais/metabolismo , Humanos , Melatonina/metabolismo , Neurogênese , Fotoperíodo , Estações do Ano , Hormônios Tireóideos/metabolismo
8.
J Endocrinol ; 238(2): R79-R94, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29848608

RESUMO

Metabolic syndrome is a global public health problem and predisposes individuals to obesity, diabetes and cardiovascular disease. Although the underlying mechanisms remain to be elucidated, accumulating evidence has uncovered a critical role of adipokines. Chemerin, encoded by the gene Rarres2, is a newly discovered adipokine involved in inflammation, adipogenesis, angiogenesis and energy metabolism. In humans, local and circulating levels of chemerin are positively correlated with BMI and obesity-related biomarkers. In this review, we discuss both peripheral and central roles of chemerin in regulating body metabolism. In general, chemerin is upregulated in obese and diabetic animals. Previous studies by gain or loss of function show an association of chemerin with adipogenesis, glucose homeostasis, food intake and body weight. In the brain, the hypothalamus integrates peripheral afferent signals including adipokines to regulate appetite and energy homeostasis. Chemerin increases food intake in seasonal animals by acting on hypothalamic stem cells, the tanycytes. In peripheral tissues, chemerin increases cell expansion, inflammation and angiogenesis in adipose tissue, collectively resulting in adiposity. While chemerin signalling enhances insulin secretion from pancreatic islets, contradictory results have been reported on how chemerin links to obesity and insulin resistance. Given the association of chemerin with obesity comorbidities in humans, advances in translational research targeting chemerin are expected to mitigate metabolic disorders. Together, the exciting findings gathered in the last decade clearly indicate a crucial multifaceted role for chemerin in the regulation of energy balance, making it a promising candidate for urgently needed pharmacological treatment strategies for obesity.


Assuntos
Quimiocinas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Doenças Metabólicas/etiologia , Adipocinas/fisiologia , Adiposidade/fisiologia , Animais , Regulação do Apetite/genética , Metabolismo Energético/fisiologia , Humanos , Resistência à Insulina/genética , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Obesidade/etiologia , Obesidade/metabolismo
9.
Brain Behav Immun ; 61: 340-352, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27993690

RESUMO

Seasonal animals undergo changes in physiology and behavior between summer and winter conditions. These changes are in part driven by a switch in a series of hypothalamic genes under transcriptional control by hormones and, of recent interest, inflammatory factors. Crucial to the control of transcription are histone deacetylases (HDACs), generally acting to repress transcription by local histone modification. Seasonal changes in hypothalamic HDAC transcripts were investigated in photoperiod-sensitive F344 rats by altering the day-length (photoperiod). HDAC4, 6 and 9 were found to change in expression. The potential influence of HDACs on two hypothalamic signaling pathways that regulate transcription, inflammatory and nuclear receptor signaling, was investigated. For inflammatory signaling the focus was on NF-κB because of the novel finding made that its expression is seasonally regulated in the rat hypothalamus. For nuclear receptor signaling it was discovered that expression of retinoic acid receptor beta was regulated seasonally. HDAC modulation of NF-κB-induced pathways was examined in a hypothalamic neuronal cell line and primary hypothalamic tanycytes. HDAC4/5/6 inhibition altered the control of gene expression (Fos, Prkca, Prkcd and Ptp1b) by inducers of NF-κB that activate inflammation. These inhibitors also modified the action of nuclear receptor ligands thyroid hormone and retinoic acid. Thus seasonal changes in HDAC4 and 6 have the potential to epigenetically modify multiple gene regulatory pathways in the hypothalamus that could act to limit inflammatory pathways in the hypothalamus during long-day summer-like conditions.


Assuntos
Histona Desacetilases/genética , Hipotálamo/metabolismo , Fotoperíodo , Estações do Ano , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Hipotálamo/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
10.
Sci Rep ; 6: 26830, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225311

RESUMO

Long-term and reversible changes in body weight are typical of seasonal animals. Thyroid hormone (TH) and retinoic acid (RA) within the tanycytes and ependymal cells of the hypothalamus have been implicated in the photoperiodic response. We investigated signalling downstream of RA and how this links to the control of body weight and food intake in photoperiodic F344 rats. Chemerin, an inflammatory chemokine, with a known role in energy metabolism, was identified as a target of RA. Gene expression of chemerin (Rarres2) and its receptors were localised within the tanycytes and ependymal cells, with higher expression under long (LD) versus short (SD) photoperiod, pointing to a physiological role. The SD to LD transition (increased food intake) was mimicked by 2 weeks of ICV infusion of chemerin into rats. Chemerin also increased expression of the cytoskeletal protein vimentin, implicating hypothalamic remodelling in this response. By contrast, acute ICV bolus injection of chemerin on a 12 h:12 h photoperiod inhibited food intake and decreased body weight with associated changes in hypothalamic neuropeptides involved in growth and feeding after 24 hr. We describe the hypothalamic ventricular zone as a key site of neuroendocrine regulation, where the inflammatory signal, chemerin, links TH and RA signaling to hypothalamic remodeling.


Assuntos
Quimiocinas/fisiologia , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fotoperíodo , Animais , Peso Corporal/efeitos dos fármacos , Quimiocinas/administração & dosagem , Quimiocinas/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Epêndima/citologia , Epêndima/metabolismo , Células Ependimogliais/metabolismo , Humanos , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Receptores de Quimiocinas/análise , Receptores de Quimiocinas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/fisiologia
11.
Glia ; 64(3): 425-39, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26527258

RESUMO

Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)-synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA-responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1-expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus.


Assuntos
Células Ependimogliais/efeitos dos fármacos , Hipotálamo/citologia , Retinal Desidrogenase/metabolismo , Hormônios Tireóideos/farmacologia , Tretinoína/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Animais Recém-Nascidos , Células Cultivadas , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Masculino , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Técnicas de Cultura de Órgãos , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Receptores do Ácido Retinoico/metabolismo , Retinal Desidrogenase/genética , Especificidade da Espécie , Vimentina/metabolismo
12.
Endocrinology ; 157(2): 799-809, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26646203

RESUMO

The WNT pathway was shown to play an important role in the adult central nervous system. We previously identified the WNT pathway as a novel integration site of the adipokine leptin in mediating its neuroendocrine control of metabolism in obese mice. Here we investigated the implication of WNT signaling in seasonal body weight regulation exhibited by the Djungarian hamster (Phodopus sungorus), a seasonal mammal that exhibits profound annual changes in leptin sensitivity. We furthermore investigated whether crucial components of the WNT pathway are regulated in a diurnal manner. Gene expression of key components of the WNT pathway in the hypothalamus of hamsters acclimated to either long day (LD) or short day (SD) photoperiod was analyzed by in situ hybridization. We detected elevated expression of the genes WNT-4, Axin-2, Cyclin-D1, and SFRP-2, in the hypothalamic arcuate nucleus, a key energy balance integration site, during LD compared with SD as well as a diurnal regulation of Axin-2, Cyclin-D1, and DKK-3. Investigating the effect of photoperiod as well as leptin on the activation (phosphorylation) of the WNT coreceptor LRP-6-(Ser1490) by immunohistochemistry, we found elevated activity in the arcuate nucleus during LD relative to SD as well as after leptin treatment (2 mg/kg body weight). These findings indicate that differential WNT signaling may be associated with seasonal body weight regulation and is partially regulated in a diurnal manner in the adult brain. Furthermore, they suggest that this pathway plays a key role in the neuroendocrine regulation of body weight and integration of the leptin signal.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Proteína Axina/genética , Peso Corporal/genética , Ritmo Circadiano/genética , Ciclina D1/genética , Fotoperíodo , Via de Sinalização Wnt/genética , Proteína Wnt4/genética , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Proteína Axina/efeitos dos fármacos , Proteína Axina/metabolismo , Peso Corporal/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Cricetinae , Ciclina D1/efeitos dos fármacos , Ciclina D1/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Feminino , Perfilação da Expressão Gênica , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Leptina/farmacologia , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Phodopus , Estações do Ano , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt4/efeitos dos fármacos , Proteína Wnt4/metabolismo
13.
J Mol Endocrinol ; 54(3): 241-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25878058

RESUMO

Tanycytes play multiple roles in hypothalamic functions, including sensing peripheral nutrients and metabolic hormones, regulating neurosecretion and mediating seasonal cycles of reproduction and metabolic physiology. This last function reflects the expression of TSH receptors in tanycytes, which detect photoperiod-regulated changes in TSH secretion from the neighbouring pars tuberalis. The present overall aim was to determine the signal transduction pathway by which TSH signals in tanycytes. Expression of the TSH receptor in tanycytes of 10-day-old Sprague Dawley rats was observed by in situ hybridisation. Primary ependymal cell cultures prepared from 10-day-old rats were found by immunohistochemistry to express vimentin but not GFAP and by PCR to express mRNA for Dio2, Gpr50, Darpp-32 and Tsh receptors that are characteristic of tanycytes. Treatment of primary tanycyte/ependymal cultures with TSH (100  IU/l) increased cAMP as assessed by ELISA and induced a cAMP-independent increase in the phosphorylation of ERK1/2 as assessed by western blot analysis. Furthermore, TSH (100  IU/l) stimulated a 2.17-fold increase in Dio2 mRNA expression. We conclude that TSH signal transduction in cultured tanycytes signals via Gαs to increase cAMP and via an alternative G protein to increase phosphorylation of ERK1/2.


Assuntos
Células Ependimogliais/metabolismo , Receptores da Tireotropina/metabolismo , Tireotropina/fisiologia , Animais , AMP Cíclico/metabolismo , Feminino , Iodeto Peroxidase/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Fosforilação , Cultura Primária de Células , Processamento de Proteína Pós-Traducional , Ratos Sprague-Dawley , Sistemas do Segundo Mensageiro , Iodotironina Desiodinase Tipo II
14.
PLoS One ; 10(3): e0119763, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789758

RESUMO

In this study the effects of photoperiod and diet, and their interaction, were examined for their effects on growth and body composition in juvenile F344 rats over a 4-week period. On long (16L:8D), relative to short (8L:16D), photoperiod food intake and growth rate were increased, but percentage adiposity remained constant (ca 3-4%). On a high fat diet (HFD), containing 22.8% fat (45% energy as fat), food intake was reduced, but energy intake increased on both photoperiods. This led to a small increase in adiposity (up to 10%) without overt change in body weight. These changes were also reflected in plasma leptin and lipid levels. Importantly while both lean and adipose tissue were strongly regulated by photoperiod on a chow diet, this regulation was lost for adipose, but not lean tissue, on HFD. This implies that a primary effect of photoperiod is the regulation of growth and lean mass accretion. Consistent with this both hypothalamic GHRH gene expression and serum IGF-1 levels were photoperiod dependent. As for other animals and humans, there was evidence of central hyposomatotropism in response to obesity, as GHRH gene expression was suppressed by the HFD. Gene expression of hypothalamic AgRP and CRH, but not NPY nor POMC, accorded with the energy balance status on long and short photoperiod. However, there was a general dissociation between plasma leptin levels and expression of these hypothalamic energy balance genes. Similarly there was no interaction between the HFD and photoperiod at the level of the genes involved in thyroid hormone metabolism (Dio2, Dio3, TSHß or NMU), which are important mediators of the photoperiodic response. These data suggest that photoperiod and HFD influence body weight and body composition through independent mechanisms but in each case the role of the hypothalamic energy balance genes is not predictable based on their known function.


Assuntos
Metabolismo Energético/fisiologia , Obesidade/metabolismo , Fotoperíodo , Adiposidade/fisiologia , Animais , Composição Corporal/fisiologia , Dieta Hiperlipídica , Humanos , Hipotálamo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Obesidade/sangue , Obesidade/fisiopatologia , Ratos , Receptores de Neuropeptídeos/sangue , Receptores de Hormônios Reguladores de Hormônio Hipofisário/sangue
15.
J Neurochem ; 122(4): 789-99, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22681644

RESUMO

Retinoic acid (RA) has been found to regulate hypothalamic function, but precisely where it acts is unknown. This study shows expression of retinaldehyde dehydrogenase (RALDH) enzymes in tanycytes that line the third ventricle in an area overlapping with the site of hypothalamic neural stem cells. The influence of RA was examined on the proliferation of progenitors lining the third ventricle using organotypic slice cultures. As has been shown in other regions of neurogenesis, RA was found to inhibit proliferation. Investigations of the dynamics of RALDH1 expression in the rat hypothalamus have shown that this enzyme is in tanycytes under photoperiodic control with highest levels during long versus short days. In parallel to this shift in RA synthesis, cell proliferation in the third ventricle was found to be lowest during long days when RA was highest, implying that RALDH1 synthesized RA may regulate neural stem cell proliferation. A second RA synthesizing enzyme, RALDH2 was also present in tanycytes lining the third ventricle. In contrast to RALDH1, RALDH2 showed little change with photoperiodicity, but surprisingly the protein was present in the apparent absence of mRNA transcript and it is hypothesized that the endocytic tanycytes may take this enzyme up from the cerebrospinal fluid (CSF).


Assuntos
Proliferação de Células/efeitos dos fármacos , Hipotálamo/citologia , Hipotálamo/enzimologia , Fotoperíodo , Retinal Desidrogenase/biossíntese , Tretinoína/farmacologia , Família Aldeído Desidrogenase 1 , Animais , Western Blotting , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Imuno-Histoquímica , Hibridização In Situ , Isoenzimas/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Retinal Desidrogenase/líquido cefalorraquidiano , Terceiro Ventrículo/citologia , Terceiro Ventrículo/efeitos dos fármacos , Terceiro Ventrículo/metabolismo , Tretinoína/análise
16.
Chronobiol Int ; 29(2): 189-202, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22324557

RESUMO

The circadian endocrine hormone melatonin plays a significant role in many physiological processes, such as modulating the sleep/wake cycle and oxidative stress. Melatonin is synthesized and secreted during the night by the pineal gland and released into the circulatory system. It binds to numerous membrane, cytosolic, and nuclear receptors in the brain and peripheral organs. Three G-protein-linked membrane receptors (Mel1A, Mel1B, and Mel1C) have been identified in numerous species. Considering the importance of this hormone and its receptors, this study looks at the location and rhythmicity of these three avian melatonin receptors using reverse transcriptase-polymerase chain reaction (RT-PCR) mRNA analysis techniques. This study shows successful partial cloning of the three receptors, and gene expression analysis reveals significant rhythms of the Mel1A receptor in the cerebellum, diencephalon, tectum opticum, telencephalon, and retina. Significant rhythms were found in the diencephalon, pineal gland, retina, tectum opticum, and cerebellum of the Mel1B receptor, whereas Mel1C appeared not to be rhythmically expressed in brain tissues studied. Mel1A, Mel1B, and Mel1C receptor mRNAs were also present in peripheral tissues, showing tissue-specific expression patterns.


Assuntos
Encéfalo/fisiologia , Tentilhões/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de Melatonina/metabolismo , Animais , Encéfalo/anatomia & histologia , Ritmo Circadiano/fisiologia , Feminino , Tentilhões/anatomia & histologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Melatonina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Distribuição Tecidual
17.
Endocrinology ; 153(2): 815-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22210746

RESUMO

In seasonal mammals, growth, energy balance, and reproductive status are regulated by the neuroendocrine effects of photoperiod. Thyroid hormone (TH) is a key player in this response in a number of species. A neuroendocrine role for the nutritional factor vitamin A has not been considered, although its metabolic product retinoic acid (RA) regulates transcription via the same nuclear receptor family as TH. We hypothesized that vitamin A/RA plays a role in the neuroendocrine hypothalamus alongside TH signaling. Using a reporter assay to measure RA activity, we demonstrate that RA activity levels in the hypothalamus of photoperiod-sensitive F344 rats are reduced in short-day relative to long-day conditions. These lower RA activity levels can be explained by reduced expression of a whole network of RA signaling genes in the ependymal cells around the third ventricle and in the arcuate nucleus of the hypothalamus. These include genes required for uptake (Ttr, Stra6, and Crbp1), synthesis (Raldh1), receptor response (RAR), and ligand clearance (Crapb1 and Cyp26B1). Using melatonin injections into long-day rats, we show that the probable trigger of the fall in RA is melatonin. Surprisingly we also found RPE65 expression in the mammalian hypothalamus for the first time. Similar to RA signaling genes, members of the Wnt/ß-catenin pathway and NMU and its receptor NMUR2 are also under photoperiodic control. Our data provide strong evidence for a novel endocrine axis, involving the nutrient vitamin A regulated by photoperiod and melatonin and suggest a role for several new players in the photoperiodic neuroendocrine response.


Assuntos
Fotoperíodo , Vitamina A/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Hipotálamo/fisiologia , Masculino , Melatonina/farmacologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Proteínas Wnt/genética , beta Catenina/genética
18.
PLoS One ; 6(6): e21351, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731713

RESUMO

Seasonal animals adapt their physiology and behaviour in anticipation of climate change to optimise survival of their offspring. Intra-hypothalamic thyroid hormone signalling plays an important role in seasonal responses in mammals and birds. In the F344 rat, photoperiod stimulates profound changes in food intake, body weight and reproductive status. Previous investigations of the F344 rat have suggested a role for thyroid hormone metabolism, but have only considered Dio2 expression, which was elevated in long day photoperiods. Microarray analysis was used to identify time-dependent changes in photoperiod responsive genes, which may underlie the photoperiod-dependent phenotypes of the juvenile F344 rat. The most significant changes are those related to thyroid hormone metabolism and transport. Using photoperiod manipulations and melatonin injections into long day photoperiod (LD) rats to mimic short day (SD), we show photoinduction and photosuppression gene expression profiles and melatonin responsiveness of genes by in situ hybridization; TSHß, CGA, Dio2 and Oatp1c1 genes were all elevated in LD whilst in SD, Dio3 and MCT-8 mRNA were increased. NPY was elevated in SD whilst GALP increased in LD. The photoinduction and photosuppression profiles for GALP were compared to that of GHRH with GALP expression following GHRH temporally. We also reveal gene sets involved in photoperiodic responses, including retinoic acid and Wnt/ß-catenin signalling. This study extends our knowledge of hypothalamic regulation by photoperiod, by revealing large temporal changes in expression of thyroid hormone signalling genes following photoperiod switch. Surprisingly, large changes in hypothalamic thyroid hormone levels or TRH expression were not detected. Expression of NPY and GALP, two genes known to regulate GHRH, were also changed by photoperiod. Whether these genes could provide links between thyroid hormone signalling and the regulation of the growth axis remains to be investigated.


Assuntos
Regulação da Expressão Gênica , Hipotálamo/metabolismo , Fotoperíodo , Transdução de Sinais/genética , Hormônios Tireóideos/metabolismo , Animais , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hipotálamo/efeitos dos fármacos , Melatonina/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Endogâmicos F344 , Transdução de Sinais/efeitos dos fármacos , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/genética
19.
Chronobiol Int ; 23(1-2): 113-27, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16687285

RESUMO

Birds are equipped with a complex circadian pacemaking system that regulates the rhythmicity of physiology and behavior. As with all organisms, transcriptional and translational feedback loops of clock genes represent the basic molecular mechanism of rhythm generation in birds. To investigate avian clock gene expression, partial cDNA sequences of six mammalian clock gene homologs (Bmal1, Clock, Per2, Per3, Cry1, and Cry2) and a novel avian cryptochrome gene (Cry4) were cloned from the house sparrow, a model system in circadian research. Expression patterns were analyzed by semi-quantitative RT-PCR and RNase protection assays using total RNA extracted from adult male house sparrow brains. With the exception of Cry4, pronounced rhythmic mRNA expression of all the clock genes analyzed was encountered, with mRNA levels varying considerably between the various genes. Although some basic features of the molecular circadian feedback loop appear to be similar between mammals and birds, the precise phase relationships of the clock gene mRNA rhythms relative to each other and to the light zeitgeber differ significantly between the house sparrow and mammals. Our results point to the existence of differences in the organization of avian and mammalian circadian clock mechanisms.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Transativadores/biossíntese , Fatores de Transcrição ARNTL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas CLOCK , Criptocromos , DNA Complementar/metabolismo , Flavoproteínas/biossíntese , Masculino , Proteínas Nucleares/biossíntese , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleases/metabolismo , Pardais , Transativadores/fisiologia , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...