Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(48): 17190-17200, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976397

RESUMO

The controlled electrochemical deposition of hydrogels from low-molecular weight hydrogelators (LMWHGs) allows for the defined formation of thin films on electrodes. Here, the deposition of fibrillar networks consisting of N,N',N″-tris(4-carboxyphenylene)-1,3,5-benzenetricarboxamide (BTA) onto ultraflat gold electrodes has been studied. This process, also termed electrogelation, is based on a local change in the pH due to electrolysis of water at the electrode. The protonation of the BTA sodium salt leads to self-assembly into supramolecular fibrillar structures mainly via hydrogen bonding of the uncharged molecules. The resulting hydrogel film was characterized in terms of its thickness by atomic force microscopy (AFM). Two different AFM-based techniques have been used: ex situ imaging of dried films and in situ nanoindentation of the hydrated hydrogel films. The deposition process was studied as a function of gelator concentration, applied potential, and gelation time. These parameters allow control of the film thickness to a high degree of accuracy within a few tenths of nanometers. Film formation takes place in a few seconds at moderate applied potentials, which is beneficial for biomedical applications. The results obtained for the BTA presented here can be transferred to any type of pH-responsive LMWHG and many reversibly formed hydrogel films.

2.
Sensors (Basel) ; 23(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299955

RESUMO

Scanning electrochemical microscopy (SECM) is a versatile scanning probe technique that allows monitoring of a plethora of electrochemical reactions on a highly resolved local scale. SECM in combination with atomic force microscopy (AFM) is particularly well suited to acquire electrochemical data correlated to sample topography, elasticity, and adhesion, respectively. The resolution achievable in SECM depends critically on the properties of the probe acting as an electrochemical sensor, i.e., the working electrode, which is scanned over the sample. Hence, the development of SECM probes received much attention in recent years. However, for the operation and performance of SECM, the fluid cell and the three-electrode setup are also of paramount importance. These two aspects received much less attention so far. Here, we present a novel approach to the universal implementation of a three-electrode setup for SECM in practically any fluid cell. The integration of all three electrodes (working, counter, and reference) near the cantilever provides many advantages, such as the usage of conventional AFM fluid cells also for SECM or enables the measurement in liquid drops. Moreover, the other electrodes become easily exchangeable as they are combined with the cantilever substrate. Thereby, the handling is improved significantly. We demonstrated that high-resolution SECM, i.e., resolving features smaller than 250 nm in the electrochemical signal, could be achieved with the new setup and that the electrochemical performance was equivalent to the one obtained with macroscopic electrodes.


Assuntos
Microscopia de Força Atômica , Microscopia de Força Atômica/métodos , Microscopia Eletroquímica de Varredura , Eletrodos
3.
Langmuir ; 37(46): 13537-13547, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34752120

RESUMO

The colloidal probe technique, which is based on micrometer-sized colloidal particles that are attached to the end of a cantilever, revolutionized direct force measurements by atomic force microscopy (AFM). Its major advantages are a defined interaction geometry and a high force sensitivity. Here, we present a versatile and simple approach for preparing spherical electrodes in the micrometer range on an otherwise insulated AFM cantilever. Thereby, it becomes possible to combine direct force measurements and potentiostatic control of the probe for various types of electrode materials. Two examples for the use of such electrochemical colloidal probes (eCP) are presented: First, on soft, conductive films of poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) the adhesion behavior was studied. The current through the contact area between the probe and film remained constant until the jump-out of contact, indicating a constant geometrical contact area. Second, the long-range forces due to diffuse layer overlap between an eCP and a glass surface have been determined as a function of the externally applied potential. The resulting interaction force profiles are in good agreement with those calculated based on charge regulation and solutions of the full Poisson-Boltzmann equation.

4.
Chem Commun (Camb) ; 57(59): 7244-7247, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34190238

RESUMO

Polyethyleneimine aids the gas diffusion precipitation of nano-structured basic cobalt carbonate sheets at the air/solution interface. Upon drying, these mineral films undergo self-rolling into 3D coiled structures. Exploring this principle for the design of self-supported functional materials, porous Co3O4 spirals composed of interconnected nanoparticles are obtained by thermal conversion.

5.
Small ; 15(43): e1902976, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31544313

RESUMO

The colloidal probe technique, which is based on the atomic force microscope, revolutionizes direct force measurements in many fields, such as interface science or biomechanics. It allows for the first time to determine interaction forces on the single particle or cell level. However, for many applications, important "blind spots" remain, namely, the possibility to probe interaction potentials for nanoparticles or complex colloids with a soft outer shell. Definitely, these are colloidal systems that are currently of major industrial importance and interest from theory. The here-presented novel approach allows for overcome the aforementioned limitations. Its applicability has been demonstrated for 300 nm sized carboxylate-modified latex particles as well as sub-micron core-shell particles with a soft poly-N-isopropylacrylamide hydrogel shell and a rigid silica core. For the latter, which until now cannot be studied by the colloidal probe technique, determined is the temperature dependency of electrosteric and adhesion forces has been determined on the single particle level.

6.
Sci Rep ; 9(1): 20294, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889103

RESUMO

The combination of atomic force microscopy (AFM) with nanofluidics, also referred to as FluidFM, has facilitated new applications in scanning ion conductance microscopy, direct force measurements, lithography, or controlled nanoparticle deposition. An essential element of this new type of AFMs is its cantilever, which bears an internal micro-channel with a defined aperture at the end. Here, we present a new approach for in-situ characterization of the internal micro-channels, which is non-destructive and based on electrochemical methods. It allows for probing the internal environment of a micro-channeled cantilever and the corresponding aperture, respectively. Acquiring the streaming current in the micro-channel allows to determine not only the state of the aperture over a wide range of ionic strengths but also the surface chemistry of the cantilever's internal channel. The high practical applicability of this method is demonstrated by detecting the aspiration of polymeric, inorganic and hydrogel particles with diameters ranging from several µm down to 300 nm. By verifying in-situ the state of the aperture, i.e. open versus closed, electrophysiological or nano-deposition experiments will be significantly facilitated. Moreover, our approach is of high significance for direct force measurements by the FluidFM-technique and sub-micron colloidal probes.

7.
Macromol Rapid Commun ; 39(8): e1700838, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29436034

RESUMO

Poly(N-isopropyl acrylamide) (PNIPAM) hydrogels are well known for their temperature-dependent water uptake and release. Hence, they are ideal candidates for water management applications. However, efficiency and rate of water uptake and release, respectively, have to be optimized. Here, highly stable 3D PNIPAM sponges that show a sufficiently low density and high specific pore volume, required for maximizing the amount and rate of water absorption-desorption, are presented. They are prepared by a top-down approach based on freeze-drying a dispersion of short crosslinked PNIPAM fibers coated with crosslinked PNIPAM. The sponges have low densities (4.10-21.04 mg cm-3 ), high porosities >98%, and high specific pore volumes in the range of 47-243 cm3 g-1 depending on the concentration of the dispersions. The sponges absorb high amounts of water (≈7000%) at temperatures below the lower critical solution temperature (LCST) of PNIPAM and can release more than 80% of the absorbed water above the LCST in less than 2 min. Moreover, the water-swollen sponges are reversibly foldable, can be confined to different shapes, and have compressive elastic modulus below 10 Pa. Hence, these spongy materials are of interest not only for water management but also for biomedical applications, smart textiles, and catalysis.


Assuntos
Acrilamidas/química , Resinas Acrílicas/química , Hidrogéis/química , Polímeros/química , Água/química , Porosidade
8.
Nanoscale ; 9(27): 9491-9501, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28660974

RESUMO

Direct force measurements by atomic force microscopy (AFM) in combination with the colloidal probe technique are widely used to determine interaction forces in colloidal systems. However, a number of limitations are still preventing a more universal applicability of this technique. Currently, one of the most significant limitations is that only particles with diameters of several micrometers can be used as probe particles. Here, we present a novel approach, based on the combination of nanofluidics and AFM (also referred to as FluidFM-technique), that allows to overcome this size limit and extend the size of suitable probe particles below diameters of 500 nanometers. Moreover, by aspiration of colloidal particles with a hollow AFM-cantilever, the immobilization process is independent of the particle's surface chemistry. Furthermore, the probe particles can be exchanged in situ. The applicability of the FluidFM-technique is demonstrated with silica particles, which are also the types of particles most often used for the preparation of colloidal probes. By comparing 'classical' colloidal probes, i.e. probes from particles irreversibly attached with glue, and various particle sizes aspirated by the FluidFM-technique, we can quantitatively evaluate the instrumental limits. Evaluation of the force profiles demonstrate that even for 500 nm silica particles the diffuse layer properties can be evaluated quantitatively. Therefore, direct force measurements on the level of particle sizes used in industrial formulations will become available in the future.

9.
Small ; 13(31)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28639403

RESUMO

Hydrogels have many applications in biomedical surface modification and tissue engineering. However, the structuring of hydrogels after their formation represents still a major challenge, in particular due to their softness. Here, a novel approach is presented that is based on the combination of atomic force microscopy (AFM) and nanofluidics, also referred to as FluidFM technology. Its applicability is demonstrated for supramolecular hydrogel films that are prepared from low-molecular weight hydrogelators, such as derivates of 1,3,5-benzene tricarboxamides (BTAs). BTA films can be dissolved selectively by ejecting alkaline solution through the aperture of a hollow AFM-cantilever connected to a nanofluidic controller. The AFM-based force control is essential in preventing mechanical destruction of the hydrogels. The resulting "chemical writing" process is studied in detail and the influence of various parameters, such as applied pressure and time, is validated. It is demonstrated that the achievable structuring precision is primarily limited by diffusion and the aperture dimensions. Recently, various additive techniques have been presented to pattern hydrogels. The here-presented subtractive approach can not only be applied to structure hydrogels from the large class of reversibly formed gels with superior resolution but would also allow for the selective loading of the hydrogels with active substances or nanoparticles.

10.
Soft Matter ; 13(3): 578-589, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27976776

RESUMO

The adhesion of alginate hydrogels to solid surfaces was probed by atomic force microscopy (AFM) in the sphere/plane geometry. For this purpose a novel approach has been developed for the immobilization of soft colloidal probes onto AFM-cantilevers, which is inspired by techniques originating from cell biology. The aspiration and consecutive manipulation of hydrogel beads by micropipettes allows the entire manipulation sequence to be carried-out in situ. Hence, any alteration of the hydrogel beads upon drying can be excluded. The adhesive behaviour of alginate hydrogels was first evaluated by determining the distribution of pull-off forces on self-assembled monolayers (SAMs) terminating in different functional groups (-CH3, -OH, -NH2, -COOH). It was demonstrated that solvent exclusion plays practically no role in the adhesion process, in clear difference to solid colloidal probes. The adhesion of alginate beads is dominated by chemical interactions rather than solvent exclusion, in particular in the case of amino-terminated SAMs. The data set acquired on the SAMs provided the framework to relate the adhesion of alginate beads on recombinant spider silk protein films to specific functional groups. The preparation of soft colloidal probes and the presented approach in analysing the adhesive behaviour is not limited to alginate hydrogel beads but can be generally applied for probing and understanding the adhesion behaviour of hydrogels on a wide range of substrates, which would be relevant for various applications such as biomedical surface modification or tissue engineering.

11.
J Am Chem Soc ; 136(36): 12667-74, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25133879

RESUMO

Biological materials exhibit remarkable, purpose-adapted properties that provide a source of inspiration for designing new materials to meet the requirements of future applications. For instance, marine mussels are able to attach to a broad spectrum of hard surfaces under hostile conditions. Controlling wet-adhesion of synthetic macromolecules by analogue processes promises to strongly impact materials sciences by offering advanced coatings, adhesives, and glues. The de novo design of macromolecules to mimic complex aspects of mussel adhesion still constitutes a challenge. Phage display allows material scientists to design specifically interacting molecules with tailored affinity to material surfaces. Here, we report on the integration of enzymatic processing steps into phage display biopanning to expand the biocombinatorial procedure and enable the direct selection of enzymatically activable peptide adhesion domains. Adsorption isotherms and single molecule force spectroscopy show that those de novo peptides mimic complex aspects of bioadhesion, such as enzymatic activation (by tyrosinase), the switchability from weak to strong binders, and adsorption under hostile saltwater conditions. Furthermore, peptide-poly(ethylene oxide) conjugates are synthesized to generate protective coatings, which possess anti-fouling properties and suppress irreversible interactions with blood-plasma protein cocktails. The extended phage display procedure provides a generic way to non-natural peptide adhesion domains, which not only mimic nature but also improve biological sequence sections extractable from mussel-glue proteins. The de novo peptides manage to combine several tasks in a minimal 12-mer sequence and thus pave the way to overcome major challenges of technical wet glues.


Assuntos
Adesivos/metabolismo , Bivalves/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Peptídeos/metabolismo , Adesivos/química , Animais , Bivalves/química , Camundongos , Monofenol Mono-Oxigenase/química , Peptídeos/química , Sais/química , Água/química
12.
Biomater Sci ; 1(11): 1166-1171, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32517409

RESUMO

Recombinant spider silk proteins, such as eADF4(C16), can be used for various applications. Colloidal particles of eADF4(C16) show potential as drug delivery systems. Tuning the colloidal properties of suspensions of eADF4(C16) particles represents a major prerequisite for their use in pharmaceutical formulations. In this study we determined the surface properties concerning inter-particle interactions by means of electrophoretic mobility and direct force measurements. The surface charge of eADF4(C16) spider silk particles was determined as a function of ionic strength and pH, respectively. The resulting electrophoretic mobility can be described using the O'Brien and White theory and is directly related to the amino acid sequence of the protein. We determined the extension of a fuzzy protein layer protruding into the solution by direct force measurements using a colloidal probe technique. This soft layer leads to deviations in the electrophoretic mobility and is responsible for additional repulsive forces at small separation distances. These steric forces lead to a stabilization of the particle suspension at high ionic strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...