Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(8): 102816, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34377966

RESUMO

In an attempt to explore the role of the gut microbiome during recent canine evolutionary history, we sequenced the metagenome of 13 canine coprolites dated ca. 3,600-3,450 years ago from the Bronze Age archaeological site of Solarolo (Italy), which housed a complex farming community. The microbiome structure of Solarolo dogs revealed continuity with that of modern dogs, but it also shared some features with the wild wolf microbiome, as a kind of transitional state between them. The dietary niche, as also inferred from the microbiome composition, was omnivorous, with evidence of consumption of starchy agricultural foods. Of interest, the Solarolo dog microbiome was particularly enriched in sequences encoding alpha-amylases and complemented a low copy number of the host amylase gene. These findings suggest that Neolithic dogs could have responded to the transition to a starch-rich diet by expanding microbial functionalities devoted to starch catabolism, thus compensating for delayed host response.

2.
Sci Rep ; 11(1): 3650, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574393

RESUMO

Small organic molecules, lipids, proteins, and DNA fragments can remain stable over centuries. Powerful and sensitive chemical analysis can therefore be used to characterize ancient remains for classical archaeological studies. This bio-ecological dimension of archaeology can contribute knowledge about several aspects of ancient life, including social organization, daily habits, nutrition, and food storage. Faecal remains (i.e. coprolites) are particularly interesting in this regard, with scientists seeking to identify new faecal markers. Here, we report the analysis of faecal samples from modern-day humans and faecal samples from a discharge pit on the site of the ruins of ancient Pompeii. We propose that bile acids and their gut microbiota oxo-metabolites are the most specific steroid markers for detecting faecal inputs. This is due to their extreme chemical stability and their exclusive occurrence in vertebrate faeces, compared to other ubiquitous sterols and steroids.


Assuntos
Ácidos e Sais Biliares/isolamento & purificação , Restos Mortais/química , Fezes/química , Lipídeos/química , Arqueologia , Ácidos e Sais Biliares/química , DNA/química , DNA Antigo/química , Humanos , Metaboloma/genética , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...