Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 40(16): 7967-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22661575

RESUMO

Protein biosynthesis requires aminoacyl-transfer RNA (tRNA) synthetases to provide aminoacyl-tRNA substrates for the ribosome. Most bacteria and all archaea lack a glutaminyl-tRNA synthetase (GlnRS); instead, Gln-tRNA(Gln) is produced via an indirect pathway: a glutamyl-tRNA synthetase (GluRS) first attaches glutamate (Glu) to tRNA(Gln), and an amidotransferase converts Glu-tRNA(Gln) to Gln-tRNA(Gln). The human pathogen Helicobacter pylori encodes two GluRS enzymes, with GluRS2 specifically aminoacylating Glu onto tRNA(Gln). It was proposed that GluRS2 is evolving into a bacterial-type GlnRS. Herein, we have combined rational design and directed evolution approaches to test this hypothesis. We show that, in contrast to wild-type (WT) GlnRS2, an engineered enzyme variant (M110) with seven amino acid changes is able to rescue growth of the temperature-sensitive Escherichia coli glnS strain UT172 at its non-permissive temperature. In vitro kinetic analyses reveal that WT GluRS2 selectively acylates Glu over Gln, whereas M110 acylates Gln 4-fold more efficiently than Glu. In addition, M110 hydrolyzes adenosine triphosphate 2.5-fold faster in the presence of Glu than Gln, suggesting that an editing activity has evolved in this variant to discriminate against Glu. These data imply that GluRS2 is a few steps away from evolving into a GlnRS and provides a paradigm for studying aminoacyl-tRNA synthetase evolution using directed engineering approaches.


Assuntos
Aminoacil-tRNA Sintetases/química , Glutamato-tRNA Ligase/química , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Domínio Catalítico , Evolução Molecular Direcionada , Escherichia coli/enzimologia , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Ácido Glutâmico/metabolismo , Helicobacter pylori/enzimologia , Dados de Sequência Molecular , Engenharia de Proteínas , RNA de Transferência de Glutamina/metabolismo , Alinhamento de Sequência , Temperatura , Aminoacilação de RNA de Transferência
2.
FEBS Lett ; 586(1): 60-3, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22166682

RESUMO

In methanogenic archaea, Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys). The mechanism of tRNA-dependent cysteine formation remains unclear due to the lack of functional studies. In this work, we mutated 19 conserved residues in Methanocaldococcus jannaschii SepCysS, and employed an in vivo system to determine the activity of the resulting variants. Our results show that three active-site cysteines (Cys39, Cys42 and Cys247) are essential for SepCysS activity. In addition, combined with structural modeling, our mutational and functional analyses also reveal multiple residues that are important for the binding of PLP, Sep and tRNA. Our work thus represents the first systematic functional analysis of conserved residues in archaeal SepCysSs, providing insights into the catalytic and substrate binding mechanisms of this poorly characterized enzyme.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Methanococcaceae/enzimologia , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Cisteína/química , Cisteína/metabolismo , Análise Mutacional de DNA , Modelos Moleculares , Conformação Proteica , Fosfato de Piridoxal/metabolismo , Aminoacil-RNA de Transferência/metabolismo
3.
J Biol Chem ; 284(24): 16210-16217, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19386587

RESUMO

The mitochondrion of the parasitic protozoon Trypanosoma brucei does not encode any tRNAs. This deficiency is compensated for by partial import of nearly all of its cytosolic tRNAs. Most trypanosomal aminoacyl-tRNA synthetases are encoded by single copy genes, suggesting the use of the same enzyme in the cytosol and in the mitochondrion. However, the T. brucei genome encodes two distinct genes for eukaryotic aspartyl-tRNA synthetase (AspRS), although the cell has a single tRNAAsp isoacceptor only. Phylogenetic analysis showed that the two T. brucei AspRSs evolved from a duplication early in kinetoplastid evolution and also revealed that eight other major duplications of AspRS occurred in the eukaryotic domain. RNA interference analysis established that both Tb-AspRS1 and Tb-AspRS2 are essential for growth and required for cytosolic and mitochondrial Asp-tRNAAsp formation, respectively. In vitro charging assays demonstrated that the mitochondrial Tb-AspRS2 aminoacylates both cytosolic and mitochondrial tRNAAsp, whereas the cytosolic Tb-AspRS1 selectively recognizes cytosolic but not mitochondrial tRNAAsp. This indicates that cytosolic and mitochondrial tRNAAsp, although derived from the same nuclear gene, are physically different, most likely due to a mitochondria-specific nucleotide modification. Mitochondrial Tb-AspRS2 defines a novel group of eukaryotic AspRSs with an expanded substrate specificity that are restricted to trypanosomatids and therefore may be exploited as a novel drug target.


Assuntos
Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , RNA de Transferência de Ácido Aspártico/biossíntese , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Trifosfato de Adenosina/metabolismo , Animais , Citosol/enzimologia , Desenho de Fármacos , Mitocôndrias/enzimologia , Filogenia , Especificidade por Substrato , Aminoacilação de RNA de Transferência/fisiologia , Trypanosoma brucei brucei/crescimento & desenvolvimento
4.
Biochim Biophys Acta ; 1774(6): 749-55, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17490920

RESUMO

A subtilisin-like serine proteinase from a psychrotrophic Vibrio species (VPR) shows distinct cold adapted traits regarding stability and catalytic properties, while sharing high sequence homology with enzymes adapted to higher temperatures. Based on comparisons of sequences and examination of 3D structural models of VPR and related enzymes of higher temperature origin, five sites were chosen to be subject to site directed mutagenesis. Three serine residues were substituted with alanine and two residues in loops were substituted with proline. The single mutations were combined to make double and triple mutants. The single Ser/Ala mutations had a moderately stabilizing effect and concomitantly decreased catalytic efficiency. Introducing a second Ser/Ala mutation did not have additive effect on stability; on the contrary a double Ser/Ala mutant had reduced stability with regard to both wild type and single mutants. The Xaa/Pro mutations stabilized the enzyme and did also tend to decrease the catalytic efficiency more than the Ser/Ala mutations.


Assuntos
Aminoácidos/genética , Aminoácidos/metabolismo , Temperatura Baixa , Mutação/genética , Subtilisina/química , Subtilisina/metabolismo , Alanina/genética , Alanina/metabolismo , Catálise , Estabilidade Enzimática/genética , Cinética , Modelos Moleculares , Prolina/genética , Prolina/metabolismo , Estrutura Terciária de Proteína , Serina/genética , Serina/metabolismo , Subtilisina/classificação , Subtilisina/genética , Temperatura , Vibrio/enzimologia , Vibrio/genética
5.
J Bacteriol ; 189(2): 575-82, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17071763

RESUMO

Methanococcus maripaludis and Methanocaldococcus jannaschii produce cysteine for protein synthesis using a tRNA-dependent pathway. These methanogens charge tRNA(Cys) with l-phosphoserine, which is also an intermediate in the predicted pathways for serine and cystathionine biosynthesis. To establish the mode of phosphoserine production in Methanococcales, cell extracts of M. maripaludis were shown to have phosphoglycerate dehydrogenase and phosphoserine aminotransferase activities. The heterologously expressed and purified phosphoglycerate dehydrogenase from M. maripaludis had enzymological properties similar to those of its bacterial homologs but was poorly inhibited by serine. While bacterial enzymes are inhibited by micromolar concentrations of serine bound to an allosteric site, the low sensitivity of the archaeal protein to serine is consistent with phosphoserine's position as a branch point in several pathways. A broad-specificity class V aspartate aminotransferase from M. jannaschii converted the phosphohydroxypyruvate product to phosphoserine. This enzyme catalyzed the transamination of aspartate, glutamate, phosphoserine, alanine, and cysteate. The M. maripaludis homolog complemented a serC mutation in the Escherichia coli phosphoserine aminotransferase. All methanogenic archaea apparently share this pathway, providing sufficient phosphoserine for the tRNA-dependent cysteine biosynthetic pathway.


Assuntos
Methanococcales/metabolismo , Fosfosserina/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Ácido Aspártico/metabolismo , Cromatografia de Afinidade , Cisteína/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Teste de Complementação Genética , Methanococcales/enzimologia , Methanococcales/genética , Mutação , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Filogenia , Piruvatos/metabolismo , Serina/metabolismo , Transaminases/genética , Transaminases/metabolismo
6.
Proc Natl Acad Sci U S A ; 103(18): 6847-52, 2006 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-16636268

RESUMO

The mitochondrion of Trypanosoma brucei does not encode any tRNAs. This deficiency is compensated for by the import of a small fraction of nearly all of its cytosolic tRNAs. Most trypanosomal aminoacyl-tRNA synthetases are encoded by single-copy genes, suggesting the use of the same enzyme in the cytosol and mitochondrion. However, the T. brucei genome contains two distinct genes for eukaryotic tryptophanyl-tRNA synthetase (TrpRS). RNA interference analysis established that both TrpRS1 and TrpRS2 are essential for growth and required for cytosolic and mitochondrial tryptophanyl-tRNA formation, respectively. Decoding the mitochondrial tryptophan codon UGA requires mitochondria-specific C-->U RNA editing in the anticodon of the imported tRNA(Trp). In vitro charging assays with recombinant TrpRS enzymes demonstrated that the edited anticodon and the mitochondria-specific thiolation of U33 in the imported tRNA(Trp) act as antideterminants for the cytosolic TrpRS1. The existence of two TrpRS enzymes, therefore, can be explained by the need for a mitochondrial synthetase with extended substrate specificity to achieve aminoacylation of the imported thiolated and edited tRNA(Trp). Thus, the notion that, in an organism, all nuclear-encoded tRNAs assigned to a given amino acid are charged by a single aminoacyl-tRNA synthetase, is not universally valid.


Assuntos
Isoenzimas/metabolismo , RNA de Transferência de Triptofano/metabolismo , Trypanosoma brucei brucei/enzimologia , Triptofano-tRNA Ligase/metabolismo , Sequência de Aminoácidos , Animais , Isoenzimas/classificação , Isoenzimas/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Filogenia , Interferência de RNA , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética , Triptofano-tRNA Ligase/classificação , Triptofano-tRNA Ligase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...