Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 902: 165899, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37524171

RESUMO

Photocatalytic upcycling of plastic waste is a promising approach to relieving pressure caused by solid waste, but the rational design of novel efficient photocatalysts remains a challenge. Herein, we utilize subnano-sized platinum (Pt)-based photocatalysts for plastic upcycling. A solution plasma strategy is developed to fabricate Pt-decorated Bi12O17Cl2 (SP-BOC). The Pt in an oxidant state and oxygen vacancies optimize the electronic structure for fast charge transfer. As a result, SP-BOC displays high performance for upcycling polyvinyl chloride (PVC) and polylactic acid (PLA) into acetic acid and formic acid, with yield rate and selectivity of 6.07 mg g-1cat. h-1 and 94 %, and 47.43 mg g-1cat. h-1 and 55.1 %, respectively. In addition, the dichlorination efficiency of PVC reaches 78.1 % within 10 h reaction, effectively reducing the environmental hazards associated with PVC waste disposal treatments. This research provides insight into the effective conversion of plastics into high-value chemicals, contributing to the reduction of carbon and toxic emissions in a practical and meaningful way, and offering a useful way for solving challenges of waste management and environmental sustainability.

2.
Materials (Basel) ; 16(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37297272

RESUMO

Polyacrylic acid (PAA)-coated magnetic nanoparticles (MNP@PAA) were synthesized and evaluated as draw solutes in the forward osmosis (FO) process. MNP@PAA were synthesized by microwave irradiation and chemical co-precipitation from aqueous solutions of Fe2+ and Fe3+ salts. The results showed that the synthesized MNPs have spherical shapes of maghemite Fe2O3 and superparamagnetic properties, which allow draw solution (DS) recovery using an external magnetic field. Synthesized MNP, coated with PAA, yielded an osmotic pressure of ~12.8 bar at a 0.7% concentration, resulting in an initial water flux of 8.1 LMH. The MNP@PAA particles were captured by an external magnetic field, rinsed in ethanol, and re-concentrated as DS in repetitive FO experiments with deionized water as a feed solution (FS). The osmotic pressure of the re-concentrated DS was 4.1 bar at a 0.35% concentration, resulting in an initial water flux of 2.1 LMH. Taken together, the results show the feasibility of using MNP@PAA particles as draw solutes.

3.
Biochim Biophys Acta Biomembr ; 1864(1): 183809, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699768

RESUMO

Human aquaporin 10 (hAQP10) is an aquaglyceroporin that assists in maintaining glycerol flux in adipocytes during lipolysis at low pH. Hence, a molecular understanding of the pH-sensitive glycerol conductance may open up for drug development in obesity and metabolically related disorders. Control of hAQP10-mediated glycerol flux has been linked to the cytoplasmic end of the channel, where a unique loop is regulated by the protonation status of histidine 80 (H80). Here, we performed unbiased molecular dynamics simulations of three protonation states of H80 to unravel channel gating. Strikingly, at neutral pH, we identified a water coordination pattern with an inverted orientation of the water molecules in vicinity of the loop. Protonation of H80 results in a more hydrophobic loop conformation, causing loss of water coordination and leaving the pore often dehydrated. Our results indicate that the loss of such water interaction network may be integral for the destabilization of the loop in the closed configuration at low pH. Additionally, a residue unique to hAQP10 (F85) reveals structural importance by flipping into the channel in correlation with loop movements, indicating a loop-stabilizing role in the closed configuration. Taken together, our simulations suggest a unique gating mechanism combining complex interaction networks between water molecules and protein residues at the loop interface. Considering the role of hAQP10 in adipocytes, the detailed molecular insights of pH-regulation presented here will help to understand glycerol pathways in these cells and may assist in drug discovery for better management of human adiposity and obesity.


Assuntos
Adiposidade/genética , Aquaporinas/genética , Glicerol/metabolismo , Água/metabolismo , Aquaporinas/química , Citoplasma/química , Citoplasma/genética , Histidina/genética , Humanos , Concentração de Íons de Hidrogênio , Lipólise/genética , Simulação de Dinâmica Molecular , Obesidade/genética , Obesidade/metabolismo , Prótons
4.
Nanomaterials (Basel) ; 11(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34835728

RESUMO

In this study, citric acid (CA)-coated magnetite Fe3O4 magnetic nanoparticles (Fe3O4@CA MNPs) for use as draw solution (DS) agents in forward osmosis (FO) were synthesized by co-precipitation and characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), transmission electron microscopy (TEM) and magnetic measurements. Prepared 3.7% w/w colloidal solutions of Fe3O4@CA MNPs exhibited an osmotic pressure of 18.7 bar after purification without aggregation and a sufficient magnetization of 44 emu/g to allow DS regeneration by an external magnetic field. Fe3O4@CA suspensions were used as DS in FO cross-flow filtration with deionized (DI) water as FS and with the active layer of the FO membrane facing the FS and NaCl as a reference DS. The same transmembrane bulk osmotic pressure resulted in different water fluxes for NaCl and MNPs, respectively. Thus the initial water flux with Fe3O4@CA was 9.2 LMH whereas for 0.45 M NaCl as DS it was 14.1 LMH. The reverse solute flux was 0.08 GMH for Fe3O4@CA and 2.5 GMH for NaCl. These differences are ascribed to a more pronounced internal dilutive concentration polarization with Fe3O4@CA as DS compared to NaCl as DS. This research demonstrated that the proposed Fe3O4@CA can be used as a potential low reverse solute flux DS for FO processes.

5.
ACS Nano ; 15(4): 7522-7535, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33779134

RESUMO

Separating low/high-valent ions with sub-nanometer sizes is a crucial yet challenging task in various areas (e.g., within environmental, healthcare, chemical, and energy engineering). Satisfying high separation precision requires membranes with exceptionally high selectivity. One way to realize this is constructing well-designed ion-selective nanochannels in pressure-driven membranes where the separation mechanism relies on combined steric, dielectric exclusion, and Donnan effects. To this aim, charged nanochannels in polyamide (PA) membranes are created by incorporating ionic polyamidoamine (PAMAM) dendrimers via interfacial polymerization. Both sub-10 nm sizes of the ionic PAMAM dendrimer molecules and their gradient distributions in the PA nanofilms contribute to the successful formation of defect-free PA nanofilms, containing both internal (intramolecular voids) and external (interfacial voids between the ionic PAMAM dendrimers and the PA matrix) nanochannels for fast transport of water molecules. The external nanochannels with tunable ionizable groups endow the PA membranes with both high low/high-valent co-ion selectivity and chemical cleaning tolerance, while the ion sieving/transport mechanism was analyzed by employing the Donnan steric pore model with dielectric exclusion.

6.
Langmuir ; 37(6): 2079-2090, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33534599

RESUMO

Polymersomes made of amphiphilic diblock copolymers are generally regarded as having higher physical and chemical stability than liposomes composed of phospholipids. This enhanced stability arises from the higher molecular weight of polymer constituents. Despite their increased stability, polymer bilayers are solubilized by detergents in a similar manner to lipid bilayers. In this work, we evaluated the stability of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL)-based polymersomes exposed to three different detergents: N-octyl-ß-d-glucopyranoside (OG), lauryldimethylamine N-oxide (LDAO), and Triton X-100 (TX-100). Changes in morphology, particle size distribution, and concentrations of the polymersomes were evaluated during the titration of the detergents into the polymersome solutions. Furthermore, we discussed the effect of detergent features on the solubilization of the polymeric bilayer and compared it to the results reported in the literature for liposomes and polymersomes. This information can be used for tuning the properties of PEG-PCL polymersomes for use in applications such as drug delivery or protein reconstitution studies.

7.
Membranes (Basel) ; 10(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121090

RESUMO

Forward Osmosis (FO) is a promising technology that can offer sustainable solutions in the biorefinery wastewater and desalination fields, via low energy water recovery. However, microbial biomass and organic matter accumulation on membrane surfaces can hinder the water recovery and potentially lead to total membrane blockage. Biofouling development is a rather complex process and can be affected by several factors such as nutrient availability, chemical composition of the solutions, and hydrodynamic conditions. Therefore, operational parameters like cross-flow velocity and pH of the filtration solution have been proposed as effective biofouling mitigation strategies. Nevertheless, most of the studies have been conducted with the use of rather simple solutions. As a result, biofouling mitigation practices based on such studies might not be as effective when applying complex industrial mixtures. In the present study, the effect of cross-flow velocity, pH, and cell concentration of the feed solution was investigated, with the use of complex solutions during FO separation. Specifically, fermentation effluent and crude glycerol were used as a feed and draw solution, respectively, with the purpose of recirculating water by using FO alone. The effect of the abovementioned parameters on (i) ATP accumulation, (ii) organic foulant deposition, (iii) total water recovery, (iv) reverse glycerol flux, and (v) process butanol rejection has been studied. The main findings of the present study suggest that significant reduction of biofouling can be achieved as a combined effect of high-cross flow velocity and low feed solution pH. Furthermore, cell removal from the feed solution prior filtration may further assist the reduction of membrane blockage. These results may shed light on the challenging, but promising field of FO process dealing with complex industrial solutions.

8.
Microb Cell Fact ; 19(1): 183, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32957994

RESUMO

Resistance towards known antimalarial drugs poses a significant problem, urging for novel drugs that target vital proteins in the malaria parasite Plasmodium falciparum. However, recombinant production of malaria proteins is notoriously difficult. To address this, we have investigated two putative K+ channels, PfKch1 and PfKch2, identified in the P. falciparum genome. We show that PfKch1 and PfKch2 and a C-terminally truncated version of PfKch1 (PfKch11-1094) could indeed be functionally expressed in vivo, since a K+-uptake deficient Saccharomyces cerevisiae strain was complemented by the P. falciparum cDNAs. PfKch11-1094-GFP and GFP-PfKch2 fusion proteins were overexpressed in yeast, purified and reconstituted in lipid bilayers to determine their electrophysiological activity. Single channel conductance amounted to 16 ± 1 pS for PfKch11-1094-GFP and 28 ± 2 pS for GFP-PfKch2. We predicted regulator of K+-conductance (RCK) domains in the C-terminals of both channels, and we accordingly measured channel activity in the presence of Ca2+.


Assuntos
Plasmodium falciparum/genética , Canais de Potássio/biossíntese , Proteínas de Protozoários/biossíntese , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Teste de Complementação Genética , Proteínas de Fluorescência Verde/metabolismo , Canais de Potássio/genética , Domínios Proteicos , Proteínas de Protozoários/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
9.
Anal Bioanal Chem ; 412(24): 6307-6318, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32166446

RESUMO

Vesicles constructed of either synthetic polymers alone (polymersomes) or a combination of polymers and lipids (lipo-polymersomes) demonstrate excellent long-term stability and ability to integrate membrane proteins. Applications using lipo-polymersomes with integrated membrane proteins require suitable supports to maintain protein functionality. Using lipo-polymersomes loaded with the light-driven proton pump bacteriorhodopsin (BR), we demonstrate here how the photocurrent is influenced by a chosen support. In our study, we deposited BR-loaded lipo-polymersomes in a cross-linked polyelectrolyte multilayer assembly either directly physisorbed on gold electrode microchips or cross-linked on an intermediary polyethersulfone (PES) membrane covalently grafted using a hydrogel cushion. In both cases, electrochemical impedance spectroscopic characterization demonstrated successful polyelectrolyte assembly with BR-loaded lipo-polymersomes. Light-induced proton pumping by BR-loaded lipo-polymersomes in the different support constructs was characterized by amperometric recording of the generated photocurrent. Application of the hydrogel/PES membrane support together with the polyelectrolyte assembly decreased the transient current response upon light activation of BR, while enhancing the generated stationary current to over 700 nA/cm2. On the other hand, the current response from BR-loaded lipo-polymersomes in a polyelectrolyte assembly without the hydrogel/PES membrane support was primarily a transient peak combined with a low-nanoampere-level stationary photocurrent. Hence, the obtained results demonstrated that by using a hydrogel/PES support it was feasible to monitor continuously light-induced proton flux in biomimetic applications of lipo-polymersomes. Graphical abstract.


Assuntos
Bacteriorodopsinas/química , Halobacterium salinarum/química , Membranas Artificiais , Polímeros/química , Sulfonas/química , Fontes de Energia Bioelétrica , Reagentes de Ligações Cruzadas/química , Eletricidade , Desenho de Equipamento , Hidrogéis/química , Luz , Modelos Moleculares , Polieletrólitos/química
10.
Water Sci Technol ; 80(6): 1053-1062, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31799949

RESUMO

Reactive Black 5 and Basic Blue 41 GRL dyeing solutions (dye-to-salt mixture in a 1:10 dye-to-salt mass ratio) were investigated as draw solutions (DS) in a forward osmosis (FO) system with a biomimetic membrane. Synthetic seawater (SSW) and textile wastewater (TWW1 and TWW2) were evaluated as feed solutions (FS) for water reclamation. Reactive Black 5 and Basic Blue 41 GRL were diluted from 0.02 M to concentrations of 0.002 and 0.004 M, respectively. With Reactive Black 5 as DS and SSW as FS, an initial flux of 20.24 L/m2 h and water recovery of 75% was achieved. Using TWW1 and TWW2, initial water fluxes of 19.51 and 13.43 L/m2 h were achieved, respectively, with a 30% water recovery. Using Basic Blue 41 GRL, initial water fluxes of 18.72, 15.13 and 13.42 L/m2 h were achieved with SSW, TWW1, and TWW2 as FS with water recoveries of 50%, 20% and 20%, respectively. The average reverse solute fluxes for Reactive Black 5 and Basic Blue 41 GRL were 0.06 to 0.34 g/m2 h, respectively. Diluted dyeing solutions were produced, with simultaneous water reclamation from SSW and TWW resulting in similar or higher water fluxes and lower reverse solute fluxes compared with other commercially available membranes.


Assuntos
Purificação da Água , Água , Membranas Artificiais , Osmose , Soluções , Águas Residuárias , Recursos Hídricos
11.
Nanomaterials (Basel) ; 9(9)2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31480419

RESUMO

The synthesis of magnetic nanoparticles (MNPs) coated with hydrophilic poly-sodium-acrylate (PSA) ligands was studied to assess PSA-MNP complexes as draw solution (DS) solutes in forward osmosis (FO). For MNP-based DS, the surface modification and the size of the MNPs are two crucial factors to achieve a high osmolality. Superparamagnetic nanoparticles (NP) with functional groups attached may represent the ideal DS where chemical modifications of the NPs can be used in optimizing the DS osmolality and the magnetic properties allows for efficient recovery (DS re-concentration) using an external magnetic field. In this study MNPs with diameters of 4 nm have been prepared by controlled chemical co-precipitation of magnetite phase from aqueous solutions containing suitable salts of Fe2+ and Fe3+ under inert atmosphere and a pure magnetite phase could be verified by X-ray diffraction. Magnetic colloid suspensions containing PSA-coated MNPs with three different molar ratios of PSA:MNP = 1:1, 1:2 and 1:3 were prepared and assessed in terms of osmotic pressure, aggregation propensity and magnetization. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the presence of PSA on coated MNPs and pristine PSA-MNPs with a molar ratio PSA:MNP = 1:1 exhibited an osmotic pressure of 30 bar. Molar ratios of PSA:MNP = 1:2 and 1:3 lead to the formation of less stabile magnetic colloid solutions, which led to the formation of aggregates with larger average hydrodynamic sizes and modest osmotic pressures (5.5 bar and 0.2 bar, respectively). After purification with ultrafiltration, the 1:1 nanoparticles exhibited an osmotic pressure of 9 bar with no aggregation and a sufficient magnetization of 25 emu/g to allow for DS regeneration using an external magnetic field. However, it was observed that the amount of PSA molecules attached to the MNPs decreased during DS recycling steps, leaving only strong chelate-bonded core-shell PSA as coating on the MNPs. This demonstrates the crucial role of MNP coating robustness in designing an efficient MNP-based DS for FO.

12.
Membranes (Basel) ; 9(6)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163624

RESUMO

Although forward osmosis (FO) membranes have shown great promise for many applications, there are few studies attempting to create a systematization of the testing conditions at a pilot scale for FO membrane modules. To address this issue, hollow fiber forward osmosis (HFFO) membrane modules with different performances (water flux and solute rejection) have been investigated at different operating conditions. Various draw and feed flow rates, draw solute types and concentrations, transmembrane pressures, temperatures, and operation modes have been studied using two model feed solutions-deionized water and artificial seawater. The significance of the operational conditions in the FO process was attributed to a dominant role of concentration polarization (CP) effects, where the selected draw solute and draw concentration had the biggest impact on membrane performance due to internal CP. Additionally, the rejection of the HFFO membranes using three model solutes (caffeine, niacin, and urea) were determined under both FO and reverse osmosis (RO) conditions with the same process recovery. FO rejections had an increase of 2% for caffeine, 19% for niacin, and 740% for urea compared to the RO rejections. Overall, this is the first extensive study of commercially available inside-out HFFO membrane modules.

13.
Sci Total Environ ; 647: 1021-1030, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30180310

RESUMO

Forward osmosis (FO) can be used to reclaim nutrients and high-quality water from wastewater streams. This could potentially contribute towards relieving global water scarcity. Here we investigated the feasibility of extracting water from four real and four synthetic anaerobically digested effluents, using FO membranes. The goal of this study was to 1) evaluate FO membrane performance in terms of water flux and nutrient rejection 2) examine the methane yield that can be achieved and 3) analyse FO membrane fouling. Out of the four tested real anaerobically digested effluents, swine manure and potato starch wastewater achieved the highest combined average FO water flux (>3 liter per square meter per hour (LMH) with 0.66 M MgCl2 as initial draw solution concentration) and methane yield (>300 mL CH4 per gram of organic waste expressed as volatile solids (VS)). Rejection of total ammonia nitrogen (TAN), total Kjeldahl nitrogen (TKN) and total phosphorous (TP) was high (up to 96.95%, 95.87% and 99.83%, respectively), resulting in low nutrient concentrations in the recovered water. Membrane autopsy revealed presence of organic and biological fouling on the FO membrane. However, no direct correlation between feed properties and methane yield and fouling potential was found, indicating that there is no inherent trade-off between high water flux and high methane production.

14.
Nat Commun ; 9(1): 4749, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420639

RESUMO

Obesity is a major threat to global health and metabolically associated with glycerol homeostasis. Here we demonstrate that in human adipocytes, the decreased pH observed during lipolysis (fat burning) correlates with increased glycerol release and stimulation of aquaglyceroporin AQP10. The crystal structure of human AQP10 determined at 2.3 Å resolution unveils the molecular basis for pH modulation-an exceptionally wide selectivity (ar/R) filter and a unique cytoplasmic gate. Structural and functional (in vitro and in vivo) analyses disclose a glycerol-specific pH-dependence and pinpoint pore-lining His80 as the pH-sensor. Molecular dynamics simulations indicate how gate opening is achieved. These findings unravel a unique type of aquaporin regulation important for controlling body fat mass. Thus, targeting the cytoplasmic gate to induce constitutive glycerol secretion may offer an attractive option for treating obesity and related complications.


Assuntos
Tecido Adiposo/metabolismo , Aquaporinas/metabolismo , Glicerol/metabolismo , Adipócitos/metabolismo , Idoso , Aquaporinas/química , Feminino , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Análise de Componente Principal
17.
Faraday Discuss ; 209(0): 287-301, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29974098

RESUMO

Biomimetic membrane technology, based on the use of nano-scale functional additives in the form of channel proteins or artificially made channel structures, represents an attractive way of optimizing membrane separation technology. However, the nano-scale nature of the additives inherently points to the challenge in up-scaling the membranes to square meter areas. Thus, the ability to up-scale the processes involved in manufacturing will be crucial for translating the protein/nano-science into technology. Here we discuss how highly selective aquaporin proteins can be used to enhance the performance of the classical thin film composite membrane, and how this can be used in relevant membrane elements and module form factors. A particular up-scaling challenge lies in securing large scale membrane protein production. We demonstrate our framework for making batch amounts which are compatible with the large scale production of biomimetic membranes for water purification based on the use of the E. coli expression system.


Assuntos
Aquaporinas/química , Materiais Biomiméticos/química , Aquaporinas/biossíntese , Materiais Biomiméticos/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Tamanho da Partícula , Propriedades de Superfície
18.
Membranes (Basel) ; 8(3)2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018213

RESUMO

Biomimetic membranes are attracting increased attention due to the huge potential of using biological functional components and processes as an inspirational basis for technology development. Indeed, this has led to several new membrane designs and applications. However, there are still a number of issues which need attention. Here, I will discuss three examples of biomimetic membrane developments within the areas of water treatment, energy conversion, and biomedicine with a focus on challenges and applicability. While the water treatment area has witnessed some progress in developing biomimetic membranes of which some are now commercially available, other areas are still far from being translated into technology. For energy conversion, there has been much focus on using bacteriorhodopsin proteins, but energy densities have so far not reached sufficient levels to be competitive with state-of-the-art photovoltaic cells. For biomedical (e.g., drug delivery) applications the research focus has been on the mechanism of action, and much less on the delivery 'per se'. Thus, in order for these areas to move forward, we need to address some hard questions: is bacteriorhodopsin really the optimal light harvester to be used in energy conversion? And how do we ensure that biomedical nano-carriers covered with biomimetic membrane material ever reach their target cells/tissue in sufficient quantities? In addition to these area-specific questions the general issue of production cost and scalability must also be treated in order to ensure efficient translation of biomimetic membrane concepts into reality.

19.
RSC Adv ; 9(1): 278-286, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-35521605

RESUMO

Electrospun nanofiber membrane-supported thin film composite (TFC) membranes exhibit great potential in water purification. In this work, electrospun polyphenylsulfone (PPSU) nanofiber membranes were prepared and modified by heat and plasma treatments. The resulting membranes were used as support layers for biomimetic TFC-based forward osmosis membranes. Thermal treatment transformed a loose non-woven nanofiber structure into a robust interconnected 3-dimensional PPSU network displaying a 930% increase in elastic modulus, 853% increase in maximum stress, and two-fold increase in breaking strain. Superior hydrophilicity of PPSU nanofiber membranes was achieved by low-pressure plasma treatment, changing the contact angle from 137° to 0°. The fabricated exemplary TFC-based forward osmosis membrane showed an osmotic water flux J w > 14 L m-2 h-1 with a very low reserve salt flux J s (J s/J w = 0.08 g L-1) demonstrating the potential for making high quality membranes for water treatment using PPSU-based support layers for TFC membranes.

20.
Environ Technol ; 39(3): 264-276, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28278103

RESUMO

Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps to protect humans and the environment from adverse effects. Membrane technology has gained increasing attention as an alternative to conventional wastewater treatment due to increased urbanization. Among the available membrane technologies, microfiltration (MF) and forward osmosis (FO) have been selected for this study due to their specific characteristics, such as compactness and efficient removal of particles. In this study, two treatment concepts were evaluated with regard to their specific electricity, energy and area demands. Both concepts would fulfil the Swedish discharge demands for small- and medium-sized wastewater treatment plants at full scale: (1) direct MF and (2) direct FO with seawater as the draw solution. The framework of this study is based on a combination of data obtained from bench- and pilot-scale experiments applying direct MF and FO, respectively. Additionally, available complementary data from a Swedish full-scale wastewater treatment plant and the literature were used to evaluate the concepts in depth. The results of this study indicate that both concepts are net positive with respect to electricity and energy, as more biogas can be produced compared to that using conventional wastewater treatment. Furthermore, the specific area demand is significantly reduced. This study demonstrates that municipal wastewater could be treated in a more energy- and area-efficient manner with techniques that are already commercially available and with future membrane technology.


Assuntos
Filtração/métodos , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Osmose , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...