Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(2): e0212210, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30779812

RESUMO

Cell therapy for diabetes could benefit from the identification of small-molecule compounds that increase the number of functional pancreatic beta cells. Using a newly developed screening assay, we previously identified glucocorticoids as potent stimulators of human and rat beta cell proliferation. We now compare the stimulatory action of these steroid hormones to a selection of checkpoint tyrosine kinase inhibitors that were also found to activate the cell cycle-in beta cells and analyzed their respective effects on DNA-synthesis, beta cell numbers and expression of cell cycle regulators. Our data using glucocorticoids in combination with a receptor antagonist, mifepristone, show that 48h exposure is sufficient to allow beta cells to pass the cell cycle restriction point and to become committed to cell division regardless of sustained glucocorticoid-signaling. To reach the end-point of mitosis another 40h is required. Within 14 days glucocorticoids stimulate up to 75% of the cells to undergo mitosis, which indicates that these steroid hormones act as proliferation competence-inducing factors. In contrast, by correlating thymidine-analogue incorporation to changes in absolute cell numbers, we show that the checkpoint kinase inhibitors, as compared to glucocorticoids, stimulate DNA-synthesis only during a short time-window in a minority of cells, insufficient to give a measurable increase of beta cell numbers. Glucocorticoids, but not the kinase inhibitors, were also found to induce changes in the expression of checkpoint regulators. Our data, using checkpoint kinase-specific inhibitors further point to a role for Chk1 and Cdk1 in G1/S transition and progression of beta cells through the cell cycle upon stimulation with glucocorticoids.


Assuntos
Fase G1/efeitos dos fármacos , Glucocorticoides/farmacologia , Células Secretoras de Insulina/metabolismo , Mitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fase S/efeitos dos fármacos , Adulto , Idoso , Animais , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Feminino , Humanos , Células Secretoras de Insulina/citologia , Masculino , Pessoa de Meia-Idade , Ratos
2.
Sci Rep ; 6: 36586, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824131

RESUMO

Chronic hepatic injury is accompanied by a ductular response that is strongly correlated with disease severity and progression of fibrosis. To investigate whether anti-inflammatory drugs can modulate the ductular response, we treated mice suffering from a steatotic or cholestatic injury with anti-TNF-α antibodies (Infliximab) or glucocorticoids (Dexamethasone). We discovered that Dexamethasone and Infliximab can both modulate the adaptive remodeling of the biliary architecture that occurs upon liver injury and limit extracellular matrix deposition. Infliximab treatment, at least in these steatotic and cholestatic mouse models, is the safer approach since it does not increase liver injury, allows inflammation to take place but inhibits efficiently the ductular response and extracellular matrix deposition. Infliximab-based therapy could, thus, still be of importance in multiple chronic liver disorders that display a ductular response such as alcoholic liver disease or sclerosing cholangitis.


Assuntos
Ductos Biliares , Colestase , Dexametasona/farmacologia , Matriz Extracelular , Fígado Gorduroso , Infliximab/farmacologia , Animais , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Colestase/tratamento farmacológico , Colestase/metabolismo , Colestase/patologia , Doença Crônica , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Masculino , Camundongos
3.
Am J Physiol Endocrinol Metab ; 311(4): E698-E705, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27555297

RESUMO

Compounds that increase ß-cell number can serve as ß-cell replacement therapies in diabetes. In vitro studies have identified several agents that can activate DNA synthesis in primary ß-cells but only in small percentages of cells and without demonstration of increases in cell number. We used whole well multiparameter imaging to first screen a library of 1,280 compounds for their ability to recruit adult rat ß-cells into DNA synthesis and then assessed influences of stimulatory agents on the number of living cells. The four compounds with highest ß-cell recruitment were glucocorticoid (GC) receptor ligands. The GC effect occurred in glucose-activated ß-cells and was associated with increased glucose utilization and oxidation. Hydrocortisone and methylprednisolone almost doubled the number of ß-cells in 2 wk. The expanded cell population provided an increased functional ß-cell mass for transplantation in diabetic animals. These effects are age dependent; they did not occur in neonatal rat ß-cells, where GC exposure suppressed basal replication and was cytotoxic. We concluded that GCs can induce the replication of adult rat ß-cells through a direct action, with intercellular differences in responsiveness that have been related to differences in glucose activation and in age. These influences can explain variability in GC-induced activation of DNA synthesis in rat and human ß-cells. Our study also demonstrated that ß-cells can be expanded in vitro to increase the size of metabolically adequate grafts.


Assuntos
Glucocorticoides/farmacologia , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Transplante das Ilhotas Pancreáticas/métodos , Animais , Animais Recém-Nascidos , Contagem de Células , Separação Celular , DNA/biossíntese , DNA/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Ratos , Ratos Wistar , Receptores de Glucocorticoides/biossíntese , Receptores de Glucocorticoides/genética
4.
PLoS One ; 6(9): e24134, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912665

RESUMO

BACKGROUND AND METHODOLOGY: The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators. PRINCIPAL FINDINGS: A panel of 332 conserved beta cell biomarker genes was found to discriminate both isolated and laser capture microdissected beta cells from all other examined cell types. Of all conserved beta cell-markers, 15% were strongly beta cell-selective and functionally associated to hormone processing, 15% were shared with neuronal cells and associated to regulated synaptic vesicle transport and 30% with immune plus gut mucosal tissues reflecting active protein synthesis. Fasting specifically down-regulated the latter cluster, but preserved the neuronal and strongly beta cell-selective traits, indicating preserved differentiated state. Analysis of consensus binding site enrichment indicated major roles of CREB/ATF and various nutrient- or redox-regulated transcription factors in maintenance of differentiated beta cell phenotype. CONCLUSIONS: Conserved beta cell marker genes contain major gene clusters defined by their beta cell selectivity or by their additional abundance in either neural cells or in immune plus gut mucosal cells. This panel can be used as a template to identify changes in the differentiated state of beta cells.


Assuntos
Sequência Conservada , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Família Multigênica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma/genética , Animais , Diferenciação Celular/genética , Jejum/metabolismo , Marcadores Genéticos/genética , Humanos , Masculino , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo
5.
PLoS One ; 5(12): e14214, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21151894

RESUMO

BACKGROUND AND METHODOLOGY: Pancreatic beta cells show intercellular differences in their metabolic glucose sensitivity and associated activation of insulin production. To identify protein markers for these variations in functional glucose sensitivity, rat beta cell subpopulations were flow-sorted for their level of glucose-induced NAD(P)H and their proteomes were quantified by label-free data independent alternate scanning LC-MS. Beta cell-selective proteins were also identified through comparison with rat brain and liver tissue and with purified islet alpha cells, after geometrical normalization using 6 stably expressed reference proteins. PRINCIPAL FINDINGS: All tissues combined, 943 proteins were reliably quantified. In beta cells, 93 out of 467 quantifiable proteins were uniquely detected in this cell type; several other proteins presented a high molar abundance in beta cells. The proteome of the beta cell subpopulation with high metabolic and biosynthetic responsiveness to 7.5 mM glucose was characterized by (i) an on average 50% higher expression of protein biosynthesis regulators such as 40S and 60S ribosomal constituents, NADPH-dependent protein folding factors and translation elongation factors; (ii) 50% higher levels of enzymes involved in glycolysis and in the cytosolic arm of the malate/aspartate-NADH-shuttle. No differences were noticed in mitochondrial enzymes of the Krebs cycle, beta-oxidation or respiratory chain. CONCLUSIONS: Quantification of subtle variations in the proteome using alternate scanning LC-MS shows that beta cell metabolic glucose responsiveness is mostly associated with higher levels of glycolytic but not of mitochondrial enzymes.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/citologia , Insulina/biossíntese , Proteoma , Animais , Encéfalo/metabolismo , Cromatografia Líquida/métodos , Regulação da Expressão Gênica , Glicólise , Fígado/metabolismo , Espectrometria de Massas/métodos , Mitocôndrias/enzimologia , Proteômica/métodos , Ratos , Distribuição Tecidual
6.
Endocrine ; 38(1): 118-26, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20960112

RESUMO

Type 2 diabetes is causally related to obesity and characterized by dysfunctional pancreatic beta cells. It is so far unclear whether direct interactions exist between adipocytes and beta cells and possibly raise any pathogenic relevance. In this study, we examined whether 9-day co-cultured 3T3-F442A (pre)adipocytes and primary rat pancreatic beta cells exert an influence on each other's function. In the presence of beta cells, 3T3-F442A cells became lipid-storing cells expressing markers of differentiated adipocytes and releasing adiponectin. This effect was attributed to the medium insulin levels (around 0.1 µM) and was associated with an elevated glucose consumption by the 3T3-F442A cells. The subsequent decrease in medium glucose concentration reduced the rate of insulin release by beta cells cultured at 10 mM glucose, and thus suppressed their degranulation during culture. These changes in beta cell function did not occur at 20 mM glucose and were reversible upon removal of the 3T3-F422A cells. They could not be reproduced by 3T3-F422A-conditioned medium containing varying adiponectin concentrations. These data indicate that insulin secreted by beta cells is sufficient to induce differentiation of preadipocytes without addition of exogenous adipogenic factors. Over 9 days culture, (pre)adipocytes did not directly and irreversibly affect beta cell functions.


Assuntos
Adipócitos/citologia , Comunicação Celular/fisiologia , Células Secretoras de Insulina/citologia , Células-Tronco/citologia , Células 3T3 , Adipócitos/fisiologia , Adiponectina/genética , Adiponectina/metabolismo , Animais , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Técnicas de Cocultura , Meios de Cultura/farmacologia , Glucose/farmacologia , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Ratos , Células-Tronco/fisiologia
7.
PLoS One ; 4(9): e7266, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19787047

RESUMO

Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARalpha-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRbeta(-/-) and LXRalphabeta(-/-)), beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARalpha agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARalpha agonists favors their desaturation and subsequent incorporation in neutral lipids.


Assuntos
Ácidos Graxos/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Nucleares Órfãos/metabolismo , PPAR alfa/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Animais , Metabolismo dos Lipídeos , Receptores X do Fígado , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Receptores Nucleares Órfãos/genética , Ácidos Palmíticos/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...