Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 532(2): e25552, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37916792

RESUMO

Early postnatal brain development involves complex interactions among maturing neurons and glial cells that drive tissue organization. We previously analyzed gene expression in tissue from the mouse medial nucleus of the trapezoid body (MNTB) during the first postnatal week to study changes that surround rapid growth of the large calyx of Held (CH) nerve terminal. Here, we present genes that show significant changes in gene expression level during the second postnatal week, a developmental timeframe that brackets the onset of airborne sound stimulation and the early stages of myelination. Gene Ontology analysis revealed that many of these genes are related to the myelination process. Further investigation of these genes using a previously published cell type-specific bulk RNA-Seq data set in cortex and our own single-cell RNA-Seq data set in the MNTB revealed enrichment of these genes in the oligodendrocyte lineage (OL) cells. Combining the postnatal day (P)6-P14 microarray gene expression data with the previously published P0-P6 data provided fine temporal resolution to investigate the initiation and subsequent waves of gene expression related to OL cell maturation and the process of myelination. Many genes showed increasing expression levels between P2 and P6 in patterns that reflect OL cell maturation. Correspondingly, the first myelin proteins were detected by P4. Using a complementary, developmental series of electron microscopy 3D image volumes, we analyzed the temporal progression of axon wrapping and myelination in the MNTB. By employing a combination of established ultrastructural criteria to classify reconstructed early postnatal glial cells in the 3D volumes, we demonstrated for the first time that astrocytes within the mouse MNTB extensively wrap the axons of the growing CH terminal prior to OL cell wrapping and compaction of myelin. Our data revealed significant expression of several myelin genes and enrichment of multiple genes associated with lipid metabolism in astrocytes, which may subserve axon wrapping in addition to myelin formation. The transition from axon wrapping by astrocytes to OL cells occurs rapidly between P4 and P9 and identifies a potential new role of astrocytes in priming calyceal axons for subsequent myelination.


Assuntos
Astrócitos , Bainha de Mielina , Animais , Camundongos , Axônios/ultraestrutura , Oligodendroglia/fisiologia , Tronco Encefálico/fisiologia
2.
Dev Neurobiol ; 78(11): 1097-1116, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30136399

RESUMO

Neural circuit formation involves maturation of neuronal, glial and vascular cells, as well as cell proliferation and cell death. A fundamental understanding of cellular mechanisms is enhanced by quantification of cell types during key events in synapse formation and pruning and possessing qualified genetic tools for cell type-specific manipulation. Acquiring this information in turn requires validated cell markers and genetic tools. We quantified changing proportions of neurons, astrocytes, oligodendrocytes, and microglia in the medial nucleus of the trapezoid body (MNTB) during neural circuit development. Cell type-specific markers, light microscopy and 3D virtual reality software, the latter developed in our laboratory, were used to count cells within distinct cell populations at postnatal days (P)3 and P6, bracketing the period of nerve terminal growth and pruning in this system. These data revealed a change from roughly equal numbers of neurons and glia at P3 to a 1.5:1 ratio of glia to neurons at P6. PCNA and PH3 labeling revealed that proliferation of oligodendrocytes contributed to the increase in glial cell number during this timeframe. We next evaluated Cre driver lines for selectivity in labeling cell populations. En1-Cre was specific for MNTB neurons. PDGFRα-Cre and Aldh1L1-Cre, thought to be mostly specific for oligodendrocyte lineage cells and astrocytes, respectively, both labeled significant numbers of neurons, oligodendrocytes, and astrocytes and are non-specific genetic tools in this neural system.


Assuntos
Astrócitos/citologia , Tronco Encefálico/crescimento & desenvolvimento , Neuroglia/citologia , Oligodendroglia/citologia , Animais , Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Camundongos , Microglia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...