Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 18(11): 6770-6777, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30351961

RESUMO

We showed large area uniformly aligned chiral photonic bioderived films from a liquid crystal phase formed by a cellulose nanocrystal (CNC) suspension placed in a thin capillary. As a result of the spatial confinement of the drying process, the interface between coexisting isotropic and chiral phases aligns perpendicular to the long axis of the capillary. This orientation facilitates a fast homogeneous growth of chiral pseudolayers parallel to the interface. Overall, the formation of organized solids takes hours vs weeks in contrast to the slow and heterogeneous process of drying from the traditional dish-cast approach. The saturation of water vapor in one end of the capillary causes anisotropic drying and promotes unidirectional propagation of the anisotropic phase in large regions that results in chiral CNC solid films with a uniformly oriented layered morphology. Corresponding ordering processes were monitored in situ at a nanoscale, mesoscale, and microscopic scale with complementary scattering and microscopic techniques. The resulting films show high orientation order at a multilength scale over large regions and preserved chiral handedness causing a narrower optical reflectance band and uniform birefringence over macroscopic regions in contrast to traditional dish-cast CNC films and those assembled in a magnetic field and on porous substrates. These thin films with a controllable and well-identified uniform morphology, structural colors, and handedness open up interesting possibilities for broad applications in bioderived photonic nanomaterials.

2.
Soft Matter ; 13(39): 7154-7160, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28895963

RESUMO

Mixtures of water, octane and 1-octanol with 1-tetradecyl-3-methylimidazolium chloride (C14MIM·Cl), often referred to as a surface active ionic liquid (SAIL), form water-in-oil microemulsions that have potential application as extraction media for various metal ions. Here, we present a structural study by small-angle neutron scattering (SANS) of dense microemulsions formed by surfactant-rich mixtures of these four compounds to understand how the SAIL can be used to tune the structures and properties of the microemulsions. The SANS experiments revealed that the microemulsions formed are composed of two phases, a water-in-oil microemulsion and a bicontinuous microemulsion, which becomes the dominant phase at high surfactant concentration. In this concentration regime, the surfactant film becomes more rigid, having a higher bending modulus that results from the parallel stacking of the imidazolium ring of the SAIL. At lower surfactant concentrations, the molecular packing of the SAIL does not change with the water content of the microemulsion. The results presented here correlate well with previously observed changes in the interaction between the IL cation and metal ions (Y. Tong, L. Han and Y. Yang, Ind. Eng. Chem. Res., 2012, 51, 16438-16443), while the capacity of the microemulsion system for water remains high enough for using the system as an extraction medium.

3.
Chem Phys ; 345(2-3): 133-151, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19132140

RESUMO

Neutron radiation offers significant advantages for the study of biological molecular structure and dynamics. A broad and significant effort towards instrumental and methodological development to facilitate biology experiments at neutron sources worldwide is reviewed.

4.
Biochemistry ; 39(1): 139-45, 2000 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-10625488

RESUMO

Lipid bilayers containing the antimicrobial peptide protegrin-1 (PG-1) were studied by lamellar X-ray diffraction. Previously, we have shown that the peptide exists in two distinct states when associated with lipid bilayers depending on the peptide concentration [Heller, W. T., Waring, A. J., Lehrer, R. I., and Huang, H. W. (1998) Biochemistry 37, 17331-17338]. For concentrations below a lipid-dependent threshold, PG-1 exhibits a unique oriented circular dichroism spectrum called the S state. X-ray experiments show that in this state PG-1 decreases the thickness of the lipid bilayer in proportion to the peptide concentration, similar to alamethicin's membrane thinning effect. This indicates that the S state is adsorbed in the headgroup region of the lipid bilayer, where the peptide is in an inactive state. For PG-1 above the threshold concentration, X-ray diffraction shows that the interaction between the peptide and the bilayer changes significantly. These results suggest that PG-1 has the same concentration-gated mechanism of action as alamethicin.


Assuntos
Anti-Infecciosos/química , Bicamadas Lipídicas/química , Proteínas/química , Alameticina/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos , Dados de Sequência Molecular , Peptídeos/química , Fosfatidilcolinas/química , Estrutura Secundária de Proteína , Difração de Raios X
5.
Biophys J ; 77(5): 2648-56, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10545365

RESUMO

In a previous paper (Yang et al., Biophys. J. 75:641-645, 1998), we showed a simple, efficient method of recording the diffraction patterns of supramolecular peptide assemblies in membranes where the samples were prepared in the form of oriented multilayers. Here we develop a method of analysis based on the diffraction theory of two-dimensional liquids. Gramicidin was used as a prototype model because its pore structure in membrane in known. At full hydration, the diffraction patterns of alamethicin and magainin are similar to gramicidin except in the scale of q (the momentum transfer of scattering), clearly indicating that both alamethicin and magainin form pores in membranes but of different sizes. When the hydration of the multilayer samples was decreased while the bilayers were still fluid, the in-plane positions of the membrane pores became correlated from one bilayer to the next. We believe that this is a new manifestation of the hydration force. The effect is most prominent in magainin patterns, which are used to demonstrate the method of analysis. When magainin samples were further dehydrated or cooled, the liquid-like diffraction turned into crystal-like patterns. This discovery points to the possibility of investigating the supramolecular structures with high-order diffraction.


Assuntos
Membrana Celular/metabolismo , Difração de Nêutrons/métodos , Peptídeos/química , Peptídeos/metabolismo , Gramicidina/química , Gramicidina/metabolismo , Ligação Proteica , Temperatura
6.
Biophys J ; 76(6): 3176-85, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10354442

RESUMO

We present a quantitative analysis of the effects of hydrophobic matching and membrane-mediated protein-protein interactions exhibited by gramicidin embedded in dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) bilayers (Harroun et al., 1999. Biophys. J. 76:937-945). Incorporating gramicidin, at 1:10 peptide/lipid molar ratio, decreases the phosphate-to-phosphate (PtP) peak separation in the DMPC bilayer from 35.3 A without gramicidin to 32.7 A. In contrast, the same molar ratio of gramicidin in DLPC increases the PtP from 30.8 A to 32.1 A. Concurrently, x-ray in-plane scattering showed that the most probable nearest-neighbor separation between gramicidin channels was 26.8 A in DLPC, but reduced to 23.3 A in DMPC. In this paper we review the idea of hydrophobic matching in which the lipid bilayer deforms to match the hydrophobic surface of the embedded proteins. We use a simple elasticity theory, including thickness compression, tension, and splay terms to describe the membrane deformation. The energy of membrane deformation is compared with the energy cost of hydrophobic mismatch. We discuss the boundary conditions between a gramicidin channel and the lipid bilayer. We used a numerical method to solve the problem of membrane deformation profile in the presence of a high density of gramicidin channels and ran computer simulations of 81 gramicidin channels to find the equilibrium distributions of the channels in the plane of the bilayer. The simulations contain four parameters: bilayer thickness compressibility 1/B, bilayer bending rigidity Kc, the channel-bilayer mismatch Do, and the slope of the interface at the lipid-protein boundary s. B, Kc, and Do were experimentally measured; the only free parameter is s. The value of s is determined by the requirement that the theory produces the experimental values of bilayer thinning by gramicidin and the shift in the peak position of the in-plane scattering due to membrane-mediated channel-channel interactions. We show that both hydrophobic matching and membrane-mediated interactions can be understood by the simple elasticity theory.


Assuntos
Gramicidina/química , Bicamadas Lipídicas/química , Fenômenos Biofísicos , Biofísica , Dimiristoilfosfatidilcolina/química , Proteínas de Membrana/química , Modelos Químicos , Fosfatidilcolinas/química , Termodinâmica
7.
Biophys J ; 76(2): 937-45, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9929495

RESUMO

Hydrophobic matching, in which transmembrane proteins cause the surrounding lipid bilayer to adjust its hydrocarbon thickness to match the length of the hydrophobic surface of the protein, is a commonly accepted idea in membrane biophysics. To test this idea, gramicidin (gD) was embedded in 1, 2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1, 2-myristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers at the peptide/lipid molar ratio of 1:10. Circular dichroism (CD) was measured to ensure that the gramicidin was in the beta6.3 helix form. The bilayer thickness (the phosphate-to-phosphate distance, or PtP) was measured by x-ray lamellar diffraction. In the Lalpha phase near full hydration, PtP is 30.8 A for pure DLPC, 32.1 A for the DLPC/gD mixture, 35.3 A for pure DMPC, and 32.7 A for the DMPC/gD mixture. Gramicidin apparently stretches DLPC and thins DMPC toward a common thickness as expected by hydrophobic matching. Concurrently, gramicidin-gramicidin correlations were measured by x-ray in-plane scattering. In the fluid phase, the gramicidin-gramicidin nearest-neighbor separation is 26.8 A in DLPC, but shortens to 23.3 A in DMPC. These experiments confirm the conjecture that when proteins are embedded in a membrane, hydrophobic matching creates a strain field in the lipid bilayer that in turn gives rise to a membrane-mediated attractive potential between proteins.


Assuntos
Gramicidina/química , Bicamadas Lipídicas/química , Dicroísmo Circular , Dimerização , Dimiristoilfosfatidilcolina/química , Canais Iônicos/química , Proteínas de Membrana/química , Fosfatidilcolinas/química , Estrutura Secundária de Proteína , Temperatura , Difração de Raios X
8.
Biochemistry ; 37(49): 17331-8, 1998 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-9860847

RESUMO

Protegrin-1 (PG-1), a beta-sheet antimicrobial peptide, was studied in aligned lipid bilayers by oriented circular dichroism (OCD). All of its spectra measured in a variety of lipid compositions were linear superpositions of two primary basis spectra, indicating that PG-1 existed in two different states in membranes. We designated these as state S and state I. The state assumed by PG-1 was strongly influenced by lipid composition, peptide concentration, and hydration condition. We have previously reported that the helical peptides, alamethicin and magainin, also exhibit two distinct OCD basis spectra-one corresponding to surface adsorption with the helix parallel to the bilayer and the other with perpendicular transbilayer insertion. States S and I of PG-1 may correspond to the surface state and the insertion state of alamethicin, since they show a similar dependence on lipid composition, peptide concentration, and hydration condition. Nonoriented CD spectra obtained from vesicle, micelle, and solution preparations are not linear superpositions of the basis spectra of the states S and I. This indicates that a molecular orientation change alone is insufficient to describe the S left and right arrow I transition. Rather, a more complicated process is taking place, perhaps involving a change in the hydrogen bonding pattern of the backbone. Although the structural basis of the OCD spectra remains to be determined, the discovery of two distinct states can provide information about dynamic changes of PG-1 in membranelike environments, properties undoubtedly related to its antimicrobial and cytotoxic effects.


Assuntos
Anti-Infecciosos/química , Proteínas/química , Alameticina/química , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos , Dicroísmo Circular , Bicamadas Lipídicas/química , Micelas , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Suínos
9.
Biophys J ; 75(2): 641-5, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9675166

RESUMO

We describe a method of measuring neutron scattering of aligned membranes with the momentum transfer oriented parallel or partly perpendicular to the plane of the membranes. The method obtains the complete information for the structures within fluid membranes obtainable by scattering. Data from alamethicin- and magainin-induced pores are presented. Although the in-plane scattering curves of these two peptides are similar to each other, their off-plane scattering patterns are strikingly distinct. Magainin pores exhibit intermembrane correlations.


Assuntos
Alameticina/química , Lipossomos/química , Nêutrons , Peptídeos/química , Dimiristoilfosfatidilcolina/química , Fluidez de Membrana , Modelos Biológicos , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Espalhamento de Radiação
10.
Biophys J ; 73(1): 239-44, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9199788

RESUMO

Adsorption of amphiphilic peptides to the headgroup region of a lipid bilayer is a common mode of protein-membrane interactions. Previous studies have shown that adsorption causes membrane thinning. The degree of the thinning depends on the degree of the lateral expansion caused by the peptide adsorption. If this simple molecular mechanism is correct, the degree of lateral expansion and consequently the membrane thinning should depend on the size of the headgroup relative to the cross section of the hydrocarbon chains. Previously we have established the connection between the alamethicin insertion transition and the membrane thinning effect. In this paper we use oriented circular dichroism to study the effect of varying the size of the headgroup, while maintaining a constant cross section of the lipid chains, on the insertion transition. A simple quantitative prediction agrees very well with the experiment.


Assuntos
Alameticina/química , Bicamadas Lipídicas/química , Conformação Proteica , Adsorção , Dicroísmo Circular , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química
11.
Biophys J ; 71(5): 2669-79, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8913604

RESUMO

Alamethicin adsorbs on the membrane surface at low peptide concentrations. However, above a critical peptide-to-lipid ratio (P/L), a fraction of the peptide molecules insert in the membrane. This critical ratio is lipid dependent. For diphytanoyl phosphatidylcholine it is about 1/40. At even higher concentrations P/L > or = 1/15, all of the alamethicin inserts into the membrane and forms well-defined pores as detected by neutron in-plane scattering. A previous x-ray diffraction measurement showed that alamethicin adsorbed on the surface has the effect of thinning the bilayer in proportion to the peptide concentration. A theoretical study showed that the energy cost of membrane thinning can indeed lead to peptide insertion. This paper extends the previous studies to the high-concentration region P/L > 1/40. X-ray diffraction shows that the bilayer thickness increases with the peptide concentration for P/L > 1/23 as the insertion approaches 100%. The thickness change with the percentage of insertion is consistent with the assumption that the hydrocarbon region of the bilayer matches the hydrophobic region of the inserted peptide. The elastic energy of a lipid bilayer including both adsorption and insertion of peptide is discussed. The Gibbs free energy is calculated as a function of P/L and the percentage of insertion phi in a simplified one-dimensional model. The model exhibits an insertion phase transition in qualitative agreement with the data. We conclude that the membrane deformation energy is the major driving force for the alamethicin insertion transition.


Assuntos
Alameticina/química , Canais Iônicos/química , Ionóforos/química , Bicamadas Lipídicas , Proteínas de Membrana/química , Fosfatidilcolinas/química , Adsorção , Dicroísmo Circular , Micelas , Modelos Biológicos , Água/química , Difração de Raios X
12.
Biochemistry ; 35(43): 13723-8, 1996 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-8901513

RESUMO

Magainin, found in the skin of Xenopus laevis, belongs to a broad class of antimicrobial peptides which kill bacteria by permeabilizing the cytoplasmic membrane but do not lyse eukaryotic cells. The 23-residue peptide has been shown to form an amphiphilic helix when associated with membranes. However, its molecular mechanism of action has been controversial. Oriented circular dichroism has detected helical magainin oriented perpendicular to the plane of the membrane at high peptide concentrations, but Raman, fluorescence, differential scanning calorimetry, and NMR all indicate that the peptide is associated with the head groups of the lipid bilayer. Here we show that neutron in-plane scattering detects pores formed by magainin 2 in membranes only when a substantial fraction of the peptide is oriented perpendicular to the membrane. The pores are almost twice as large as the alamethicin pores. On the basis of the in-plane scattering data, we propose a toroidal (or wormhole) model, which differs from the barrel-stave model of alamethicin in that the lipid bends back on itself like the inside of a torus. The bending requires a lateral expansion in the head group region of the bilayer. Magainin monomers play the role of fillers in the expansion region thereby stabilizing the pore. This molecular configuration is consistent with all published magainin data.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Membrana Celular/metabolismo , Peptídeos/farmacologia , Proteínas de Xenopus , Alameticina/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Óxido de Deutério , Bicamadas Lipídicas/metabolismo , Magaininas , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Conformação Molecular , Nêutrons , Fosfolipídeos/metabolismo , Espalhamento de Radiação , Pele/química , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...