Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 151(6): 1609-1621, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36754293

RESUMO

BACKGROUND: DNA methylation of cytosines at cytosine-phosphate-guanine (CpG) dinucleotides (CpGs) is a widespread epigenetic mark, but genome-wide variation has been relatively unexplored due to the limited representation of variable CpGs on commercial high-throughput arrays. OBJECTIVES: To explore this hidden portion of the epigenome, this study combined whole-genome bisulfite sequencing with in silico evidence of gene regulatory regions to design a custom array of high-value CpGs. This study focused on airway epithelial cells from children with and without allergic asthma because these cells mediate the effects of inhaled microbes, pollution, and allergens on asthma and allergic disease risk. METHODS: This study identified differentially methylated regions from whole-genome bisulfite sequencing in nasal epithelial cell DNA from a total of 39 children with and without allergic asthma of both European and African ancestries. This study selected CpGs from differentially methylated regions, previous allergy or asthma epigenome-wide association studies (EWAS), or genome-wide association study loci, and overlapped them with functional annotations for inclusion on a custom Asthma&Allergy array. This study used both the custom and EPIC arrays to perform EWAS of allergic sensitization (AS) in nasal epithelial cell DNA from children in the URECA (Urban Environment and Childhood Asthma) birth cohort and using the custom array in the INSPIRE [Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure] birth cohort. Each CpG on the arrays was assigned to its nearest gene and its promotor capture Hi-C interacting gene and performed expression quantitative trait methylation (eQTM) studies for both sets of genes. RESULTS: Custom array CpGs were enriched for intermediate methylation levels compared to EPIC CpGs. Intermediate methylation CpGs were further enriched among those associated with AS and for eQTMs on both arrays. CONCLUSIONS: This study revealed signature features of high-value CpGs and evidence for epigenetic regulation of genes at AS EWAS loci that are robust to race/ethnicity, ascertainment, age, and geography.


Assuntos
Asma , Hipersensibilidade , Criança , Humanos , Epigenoma , Epigênese Genética , Estudo de Associação Genômica Ampla , Hipersensibilidade/genética , Asma/genética , Metilação de DNA , Genômica , DNA , Ilhas de CpG
2.
Genome Med ; 14(1): 112, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175932

RESUMO

BACKGROUND: Asthma is the most common chronic disease in children, occurring at higher frequencies and with more severe disease in children with African ancestry. METHODS: We tested for association with haplotypes at the most replicated and significant childhood-onset asthma locus at 17q12-q21 and asthma in European American and African American children. Following this, we used whole-genome sequencing data from 1060 African American and 100 European American individuals to identify novel variants on a high-risk African American-specific haplotype. We characterized these variants in silico using gene expression and ATAC-seq data from airway epithelial cells, functional annotations from ENCODE, and promoter capture (pc)Hi-C maps in airway epithelial cells. Candidate causal variants were then assessed for correlation with asthma-associated phenotypes in African American children and adults. RESULTS: Our studies revealed nine novel African-specific common variants, enriched on a high-risk asthma haplotype, which regulated the expression of GSDMA in airway epithelial cells and were associated with features of severe asthma. Using ENCODE annotations, ATAC-seq, and pcHi-C, we narrowed the associations to two candidate causal variants that are associated with features of T2 low severe asthma. CONCLUSIONS: Previously unknown genetic variation at the 17q12-21 childhood-onset asthma locus contributes to asthma severity in individuals with African ancestries. We suggest that many other population-specific variants that have not been discovered in GWAS contribute to the genetic risk for asthma and other common diseases.


Assuntos
Asma , Negro ou Afro-Americano , Negro ou Afro-Americano/genética , Alelos , Asma/genética , Asma/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Proteínas Citotóxicas Formadoras de Poros
3.
Elife ; 112022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35880738

RESUMO

In the interest of advocating for the postdoctoral community in the United States (US), we compared the results of surveys of postdocs carried out in 2019 and in late 2020. We found that respondents' mental health and wellness were significantly impacted by the pandemic irrespective of their gender, race, citizenship, or other identities. Career trajectories and progression were also affected, as respondents reported being less confident about achieving career goals, and having more negative perceptions of the job market compared to before the pandemic. Postdocs working in the US on temporary visas reported experiencing increased stress levels due to changes in immigration policy. Access to institutional Postdoctoral Offices or Associations positively impacted well-being and helped mitigate some of the personal and professional stresses caused by the pandemic.


Assuntos
COVID-19 , COVID-19/epidemiologia , Identidade de Gênero , Humanos , Pandemias , Pesquisadores , Inquéritos e Questionários , Estados Unidos/epidemiologia
4.
Front Cell Infect Microbiol ; 12: 1060748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733852

RESUMO

Rhinovirus causes many types of respiratory illnesses, ranging from minor colds to exacerbations of asthma. Moraxella catarrhalis is an opportunistic pathogen that is increased in abundance during rhinovirus illnesses and asthma exacerbations and is associated with increased severity of illness through mechanisms that are ill-defined. We used a co-infection model of human airway epithelium differentiated at the air-liquid interface to test the hypothesis that rhinovirus infection promotes M. catarrhalis adhesion and survival on the respiratory epithelium. Initial experiments showed that infection with M. catarrhalis alone did not damage the epithelium or induce cytokine production, but increased trans-epithelial electrical resistance, indicative of increased barrier function. In a co-infection model, infection with the more virulent rhinovirus-A and rhinovirus-C, but not the less virulent rhinovirus-B types, increased cell-associated M. catarrhalis. Immunofluorescent staining demonstrated that M. catarrhalis adhered to rhinovirus-infected ciliated epithelial cells and infected cells being extruded from the epithelium. Rhinovirus induced pronounced changes in gene expression and secretion of inflammatory cytokines. In contrast, M. catarrhalis caused minimal effects and did not enhance RV-induced responses. Our results indicate that rhinovirus-A or C infection increases M. catarrhalis survival and cell association while M. catarrhalis infection alone does not cause cytopathology or epithelial inflammation. Our findings suggest that rhinovirus and M. catarrhalis co-infection could promote epithelial damage and more severe illness by amplifying leukocyte inflammatory responses at the epithelial surface.


Assuntos
Asma , Coinfecção , Infecções por Enterovirus , Humanos , Moraxella catarrhalis , Rhinovirus , Coinfecção/complicações , Mucosa Respiratória , Asma/complicações , Células Epiteliais/metabolismo
5.
Genome Med ; 13(1): 157, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34629083

RESUMO

BACKGROUND: Genome-wide association studies (GWASs) have identified thousands of variants associated with asthma and other complex diseases. However, the functional effects of most of these variants are unknown. Moreover, GWASs do not provide context-specific information on cell types or environmental factors that affect specific disease risks and outcomes. To address these limitations, we used an upper airway epithelial cell (AEC) culture model to assess transcriptional and epigenetic responses to rhinovirus (RV), an asthma-promoting pathogen, and provide context-specific functional annotations to variants discovered in GWASs of asthma. METHODS: Genome-wide genetic, gene expression, and DNA methylation data in vehicle- and RV-treated upper AECs were collected from 104 individuals who had a diagnosis of airway disease (n=66) or were healthy participants (n=38). We mapped cis expression and methylation quantitative trait loci (cis-eQTLs and cis-meQTLs, respectively) in each treatment condition (RV and vehicle) in AECs from these individuals. A Bayesian test for colocalization between AEC molecular QTLs and adult onset asthma and childhood onset asthma GWAS SNPs, and a multi-ethnic GWAS of asthma, was used to assign the function to variants associated with asthma. We used Mendelian randomization to demonstrate DNA methylation effects on gene expression at asthma colocalized loci. RESULTS: Asthma and allergic disease-associated GWAS SNPs were specifically enriched among molecular QTLs in AECs, but not in GWASs from non-immune diseases, and in AEC eQTLs, but not among eQTLs from other tissues. Colocalization analyses of AEC QTLs with asthma GWAS variants revealed potential molecular mechanisms of asthma, including QTLs at the TSLP locus that were common to both the RV and vehicle treatments and to both childhood onset and adult onset asthma, as well as QTLs at the 17q12-21 asthma locus that were specific to RV exposure and childhood onset asthma, consistent with clinical and epidemiological studies of these loci. CONCLUSIONS: This study provides evidence of functional effects for asthma risk variants in AECs and insight into RV-mediated transcriptional and epigenetic response mechanisms that modulate genetic effects in the airway and risk for asthma.


Assuntos
Asma/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Adolescente , Adulto , Idoso , Asma/virologia , Teorema de Bayes , Metilação de DNA , Células Epiteliais , Feminino , Expressão Gênica , Genes erbB-2 , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Rhinovirus , Adulto Jovem
6.
Commun Biol ; 3(1): 678, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188283

RESUMO

There is a life-long relationship between rhinovirus (RV) infection and the development and clinical manifestations of asthma. In this study we demonstrate that cultured primary bronchial epithelial cells from adults with asthma (n = 9) show different transcriptional and chromatin responses to RV infection compared to those without asthma (n = 9). Both the number and magnitude of transcriptional and chromatin responses to RV were muted in cells from asthma cases compared to controls. Pathway analysis of the transcriptionally responsive genes revealed enrichments of apoptotic pathways in controls but inflammatory pathways in asthma cases. Using promoter capture Hi-C we tethered regions of RV-responsive chromatin to RV-responsive genes and showed enrichment of these regions and genes at asthma GWAS loci. Taken together, our studies indicate a delayed or prolonged inflammatory state in cells from asthma cases and highlight genes that may contribute to genetic risk for asthma.


Assuntos
Asma/metabolismo , Cromatina/metabolismo , Células Epiteliais/fisiologia , Mucosa Respiratória/citologia , Rhinovirus/fisiologia , Adulto , Asma/genética , Células Cultivadas , Humanos , Transcrição Gênica
7.
J Allergy Clin Immunol ; 142(3): 749-764.e3, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29307657

RESUMO

Chromosome 17q12-21 remains the most highly replicated and significant asthma locus. Genotypes in the core region defined by the first genome-wide association study correlate with expression of 2 genes, ORM1-like 3 (ORMDL3) and gasdermin B (GSDMB), making these prime candidate asthma genes, although recent studies have implicated gasdermin A (GSDMA) distal to and post-GPI attachment to proteins 3 (PGAP3) proximal to the core region as independent loci. We review 10 years of studies on the 17q12-21 locus and suggest that genotype-specific risks for asthma at the proximal and distal loci are not specific to early-onset asthma and mediated by PGAP3, ORMDL3, and/or GSDMA expression. We propose that the weak and inconsistent associations of 17q single nucleotide polymorphisms with asthma in African Americans is due to the high frequency of some 17q alleles, the breakdown of linkage disequilibrium on African-derived chromosomes, and possibly different early-life asthma endotypes in these children. Finally, the inconsistent association between asthma and gene expression levels in blood or lung cells from older children and adults suggests that genotype effects may mediate asthma risk or protection during critical developmental windows and/or in response to relevant exposures in early life. Thus studies of young children and ethnically diverse populations are required to fully understand the relationship between genotype and asthma phenotype and the gene regulatory architecture at this locus.


Assuntos
Asma/genética , Cromossomos Humanos Par 17 , Asma/etnologia , Cromatina , Metilação de DNA , Humanos , Fenótipo , Locos de Características Quantitativas
8.
Am J Respir Cell Mol Biol ; 57(1): 91-99, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28272906

RESUMO

The gain-of-function mucin 5B (MUC5B) promoter variant, rs35705950, confers the largest risk, genetic or otherwise, for the development of idiopathic pulmonary fibrosis; however, the mechanisms underlying the regulation of MUC5B expression have yet to be elucidated. Here, we identify a critical regulatory domain that contains the MUC5B promoter variant and has a highly conserved forkhead box protein A2 (FOXA2) binding motif. This region is differentially methylated in association with idiopathic pulmonary fibrosis, MUC5B expression, and rs35705950. In addition, we show that this locus binds FOXA2 dynamically, and that binding of FOXA2 is necessary for enhanced expression of MUC5B. In aggregate, our findings identify novel targets to regulate the expression of MUC5B.


Assuntos
Fibrose Pulmonar Idiopática/genética , Mucina-5B/genética , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , Ilhas de CpG/genética , Metilação de DNA/genética , Técnicas de Silenciamento de Genes , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Mucina-5B/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas , Ligação Proteica/genética , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/metabolismo
10.
Curr Opin Pulm Med ; 21(5): 454-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26176965

RESUMO

PURPOSE OF REVIEW: Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options and extensive gene expression changes identified in the lung parenchyma. Multiple lines of evidence suggest that epigenetic factors contribute to dysregulation of gene expression in IPF lung. Most importantly, risk factors that predispose to IPF - age, sex, cigarette smoke, and genetic variants - all influence epigenetic marks. This review summarizes recent findings of association of DNA methylation and histone modifications with the presence of disease and fibroproliferation. RECENT FINDINGS: In addition to targeted studies focused on specific gene loci, genome-wide profiles of DNA methylation demonstrate widespread DNA methylation changes in IPF lung tissue and a substantial effect of these methylation changes on gene expression. Genetic loci that have been recently associated with IPF also contain differentially methylated regions, suggesting that genetic and epigenetic factors act in concert to dysregulate gene expression in IPF lung. SUMMARY: Although we are in very early stages of understanding the role of epigenetics in IPF, the potential for the use of epigenetic marks as biomarkers and therapeutic targets is high and discoveries made in this field will likely bring us closer to better prognosticating and treating this fatal disease.


Assuntos
Epigênese Genética , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Animais , Metilação de DNA , Variação Genética , Genômica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...