Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Cell Biol ; 153(4): 649-62, 2001 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-11352928

RESUMO

Gap1p, the general amino acid permease of Saccharomyces cerevisiae, is regulated by intracellular sorting decisions that occur in either Golgi or endosomal compartments. Depending on nitrogen source, Gap1p is transported to the plasma membrane, where it functions for amino acid uptake, or to the vacuole, where it is degraded. We found that overexpression of Bul1p or Bul2p, two nonessential components of the Rsp5p E3-ubiquitin ligase complex, causes Gap1p to be sorted to the vacuole regardless of nitrogen source. The double mutant bul1Delta bul2Delta has the inverse phenotype, causing Gap1p to be delivered to the plasma membrane more efficiently than in wild-type cells. In addition, bul1Delta bul2Delta can reverse the effect of lst4Delta, a mutation that normally prevents Gap1p from reaching the plasma membrane. Evaluation of Gap1p ubiquitination revealed a prominent polyubiquitinated species that was greatly diminished in a bul1Delta bul2Delta mutant. Both a rsp5-1 mutant and a COOH-terminal truncation of Gap1p behave as bul1Delta bul2Delta, causing constitutive delivery of Gap1p to the plasma membrane and decreasing Gap1p polyubiquitination. These results indicate that Bul1p and Bul2p, together with Rsp5p, generate a polyubiquitin signal on Gap1p that specifies its intracellular targeting to the vacuole.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Complexo de Golgi/enzimologia , Ligases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico/fisiologia , Proteínas de Saccharomyces cerevisiae , Complexos Ubiquitina-Proteína Ligase , Ubiquitinas/metabolismo , Sistemas de Transporte de Aminoácidos , Radioisótopos de Carbono , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citrulina/farmacocinética , Complexos Endossomais de Distribuição Requeridos para Transporte , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Membrana Transportadoras/química , Plasmídeos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases , Vacúolos/enzimologia
2.
Mol Cell Biol ; 20(13): 4604-13, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10848587

RESUMO

Ribosome binding to eukaryotic mRNA is a multistep process which is mediated by the cap structure [m(7)G(5')ppp(5')N, where N is any nucleotide] present at the 5' termini of all cellular (with the exception of organellar) mRNAs. The heterotrimeric complex, eukaryotic initiation factor 4F (eIF4F), interacts directly with the cap structure via the eIF4E subunit and functions to assemble a ribosomal initiation complex on the mRNA. In mammalian cells, eIF4E activity is regulated in part by three related translational repressors (4E-BPs), which bind to eIF4E directly and preclude the assembly of eIF4F. No structural counterpart to 4E-BPs exists in the budding yeast, Saccharomyces cerevisiae. However, a functional homolog (named p20) has been described which blocks cap-dependent translation by a mechanism analogous to that of 4E-BPs. We report here on the characterization of a novel yeast eIF4E-associated protein (Eap1p) which can also regulate translation through binding to eIF4E. Eap1p shares limited homology to p20 in a region which contains the canonical eIF4E-binding motif. Deletion of this domain or point mutation abolishes the interaction of Eap1p with eIF4E. Eap1p competes with eIF4G (the large subunit of the cap-binding complex, eIF4F) and p20 for binding to eIF4E in vivo and inhibits cap-dependent translation in vitro. Targeted disruption of the EAP1 gene results in a temperature-sensitive phenotype and also confers partial resistance to growth inhibition by rapamycin. These data indicate that Eap1p plays a role in cell growth and implicates this protein in the TOR signaling cascade of S. cerevisiae.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Antifúngicos/farmacologia , Ligação Competitiva , Resistência Microbiana a Medicamentos , Fator de Iniciação 4E em Eucariotos , Fator de Iniciação Eucariótico 4G , Proteínas Fúngicas/efeitos dos fármacos , Dados de Sequência Molecular , Mutação , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , Capuzes de RNA , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Transdução de Sinais , Sirolimo/farmacologia , Temperatura
3.
Biochem J ; 340 ( Pt 1): 135-41, 1999 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10229668

RESUMO

The essential cap-binding protein (eIF4E) of Saccharomyces cerevisiae is encoded by the CDC33 (wild-type) gene, originally isolated as a mutant, cdc33-1, which arrests growth in the G1 phase of the cell cycle at 37 degrees C. We show that other cdc33 mutants also arrest in G1. One of the first events required for G1-to-S-phase progression is the increased expression of cyclin 3. Constructs carrying the 5'-untranslated region of CLN3 fused to lacZ exhibit weak reporter activity, which is significantly decreased in a cdc33-1 mutant, implying that CLN3 mRNA is an inefficiently translated mRNA that is sensitive to perturbations in the translation machinery. A cdc33-1 strain expressing either stable Cln3p (Cln3-1p) or a hybrid UBI4 5'-CLN3 mRNA, whose translation displays decreased dependence on eIF4E, arrested randomly in the cell cycle. In these cells CLN2 mRNA levels remained high, indicating that Cln3p activity is maintained. Induction of a hybrid UBI4 5'-CLN3 message in a cdc33-1 mutant previously arrested in G1 also caused entry into a new cell cycle. We conclude that eIF4E activity in the G1-phase is critical in allowing sufficient Cln3p activity to enable yeast cells to enter a new cell cycle.


Assuntos
Ciclinas/fisiologia , Proteínas Fúngicas/fisiologia , Fase G1 , Mutação , Fatores de Iniciação de Peptídeos/fisiologia , Fase S , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Regiões 5' não Traduzidas/genética , Ciclinas/genética , Fator de Iniciação 4E em Eucariotos , Citometria de Fluxo , Proteínas Fúngicas/genética , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Genes Fúngicos/fisiologia , Genes Reporter , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Curr Biol ; 8(22): 1211-4, 1998 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-9811607

RESUMO

In Saccharomyces cerevisiae, the phosphatidylinositol kinase homologue Tor2 controls the cell-cycle-dependent organisation of the actin cytoskeleton by activating the small GTPase Rho1 via the exchange factor Rom2 [1,2]. Four Rho1 effectors are known, protein kinase C 1 (Pkc1), the formin-family protein Bni1, the glucan synthase Fks and the signalling protein Skn7 [2,3]. Rho1 has been suggested to signal to the actin cytoskeleton via Bni1 and Pkc1; rho1 mutants have never been shown to have defects in actin organisation, however [2,4]. We have further investigated the role of Rho1 in controlling actin organisation and have analysed which of the Rho1 effectors mediates Tor2 signalling to the actin cytoskeleton. We show that some, but not all, rho1 temperature-sensitive (rho1ts) mutants arrest growth with a disorganised actin cytoskeleton. Both the growth defect and the actin organisation defect of the rho1-2ts mutant were suppressed by upregulation of Pkc1 but not by upregulation of Bni1, Fks or Skn7. Overexpression of Pkc1, but not overexpression of Bni1, Fks or Skn7, also rescued a tor2ts mutant, and deletion of BNI1 or SKN7 did not prevent the suppression of the tor2ts mutation by overexpressed Rom2. Furthermore, overexpression of the Pkc1-controlled mitogen-activated protein (MAP) kinase Mpk1 suppressed the actin defect of tor2ts and rho1-2ts mutants. Thus, Tor2 signals to the actin cytoskeleton via Rho1, Pkc1 and the cell integrity MAP kinase cascade.


Assuntos
Actinas/fisiologia , Citoesqueleto/fisiologia , Proteínas Fúngicas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Glucosiltransferases , Proteínas dos Microfilamentos , Quinases de Proteína Quinase Ativadas por Mitógeno , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína Quinase C , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais , Proteínas rho de Ligação ao GTP , Proteínas de Ciclo Celular , Divisão Celular , Proteínas de Ligação a DNA/genética , Equinocandinas , Proteínas Fúngicas/genética , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , MAP Quinase Quinase 1 , MAP Quinase Quinase 2 , Proteínas de Membrana/genética , Mutagênese , Fosfatidilinositol 3-Quinases , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/genética
5.
Genetics ; 148(1): 99-112, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9475724

RESUMO

The Saccharomyces cerevisiae genes TOR1 and TOR2 encode phosphatidylinositol kinase homologs. TOR2 has two essential functions. One function overlaps with TOR1 and mediates protein synthesis and cell cycle progression. The second essential function of TOR2 is unique to TOR2 and mediates the cell-cycle-dependent organization of the actin cytoskeleton. We have isolated temperature-sensitive mutants that are defective for either one or both of the two TOR2 functions. The three classes of mutants were as follows. Class A mutants, lacking only the TOR2-unique function, are defective in actin cytoskeleton organization and arrest within two to three generations as small-budded cells in the G2/M phase of the cell cycle. Class B mutants, lacking only the TOR-shared function, and class C mutants, lacking both functions, exhibit a rapid loss of protein synthesis and a G1 arrest within one generation. To define further the two functions of TOR2, we isolated multicopy suppressors that rescue the class A or B mutants. Overexpression of MSS4, PKC1, PLC1, RHO2, ROM2, or SUR1 suppressed the growth defect of a class A mutant. Surprisingly, overexpression of PLC1 and MSS4 also suppressed the growth defect of a class B mutant. These genes encode proteins that are involved in phosphoinositide metabolism and signaling. Thus, the two functions (readouts) of TOR2 appear to involve two related signaling pathways controlling cell growth.


Assuntos
Proteínas Fúngicas/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Proteínas de Ciclo Celular , Divisão Celular/genética , Proteínas Fúngicas/biossíntese , Fase G1 , Fase G2 , Genes Fúngicos/genética , Metáfase , Mutação , Fosfatidilinositol 3-Quinases , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae
6.
Mol Biol Cell ; 7(1): 25-42, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8741837

RESUMO

Saccharomyces cerevisiae cells treated with the immunosuppressant rapamycin or depleted for the targets of rapamycin TOR1 and TOR2 arrest growth in the early G1 phase of the cell cycle. Loss of TOR function also causes an early inhibition of translation initiation and induces several other physiological changes characteristic of starved cells entering stationary phase (G0). A G1 cyclin mRNA whose translational control is altered by substitution of the UBI4 5' leader region (UBI4 is normally translated under starvation conditions) suppresses the rapamycin-induced G1 arrest and confers starvation sensitivity. These results suggest that the block in translation initiation is a direct consequence of loss of TOR function and the cause of the G1 arrest. We propose that the TORs, two related phosphatidylinositol kinase homologues, are part of a novel signaling pathway that activates eIF-4E-dependent protein synthesis and, thereby, G1 progression in response to nutrient availability. Such a pathway may constitute a checkpoint that prevents early G1 progression and growth in the absence of nutrients.


Assuntos
Proteínas Fúngicas/fisiologia , Fase G1 , Regulação Fúngica da Expressão Gênica , Fosfatidilinositol 3-Quinases , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crescimento & desenvolvimento , Antifúngicos/farmacologia , Sequência de Bases , Northern Blotting , Proteínas de Ciclo Celular , Ciclinas/genética , Ciclinas/metabolismo , Citometria de Fluxo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Iniciação Traducional da Cadeia Peptídica/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmídeos , Polienos/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sirolimo
7.
Mol Biol Cell ; 5(1): 105-18, 1994 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8186460

RESUMO

The Saccharomyces cerevisiae genes TOR1 and TOR2 were originally identified by mutations that confer resistance to the immunosuppressant rapamycin. TOR2 was previously shown to encode an essential 282-kDa phosphatidylinositol kinase (PI kinase) homologue. The TOR1 gene product is also a large (281 kDa) PI kinase homologue, with 67% identity to TOR2. TOR1 is not essential, but a TOR1 TOR2 double disruption uniquely confers a cell cycle (G1) arrest as does exposure to rapamycin; disruption of TOR2 alone is lethal but does not cause a cell cycle arrest. TOR1-TOR2 and TOR2-TOR1 hybrids indicate that carboxy-terminal domains of TOR1 and TOR2 containing a lipid kinase sequence motif are interchangeable and therefore functionally equivalent; the other portions of TOR1 and TOR2 are not interchangeable. The TOR1-1 and TOR2-1 mutations, which confer rapamycin resistance, alter the same potential protein kinase C site in the respective protein's lipid kinase domain. Thus, TOR1 and TOR2 are likely similar but not identical, rapamycin-sensitive PI kinases possibly regulated by phosphorylation. TOR1 and TOR2 may be components of a novel signal transduction pathway controlling progression through G1.


Assuntos
Ciclo Celular/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Fosfatidilinositol 3-Quinases , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , 1-Fosfatidilinositol 4-Quinase , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ciclo Celular , Resistência Microbiana a Medicamentos/genética , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/química , Polienos/farmacologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sirolimo
8.
Biochem Biophys Res Commun ; 183(1): 212-9, 1992 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-1543492

RESUMO

The prepro sequence of the yeast prepro-alpha-factor, usually referred to as the alpha-factor leader, has often been used for the efficient secretion of heterologous proteins from the yeast Saccharomyces cerevisiae. The alpha-factor leader consists of a 19-amino acid N-terminal pre or signal sequence followed by a 66-amino acid proregion. After removal of the signal sequence during membrane translocation, the proregion is cleaved from the precursor protein by the Kex2 endoprotease only in a late Golgi compartment. Here we report that a modified Kex2 enzyme, containing at the C-terminus the HDEL tetrapeptide, cleaves the proregion from the alpha-factor leader--human insulin like growth factor-1 fusion protein in the endoplasmic reticulum. The processing of pro-proteins earlier in the secretion pathway could be helpful in defining the cellular function of the proregions present naturally in various eucaryotic precursor proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Pró-Proteína Convertases , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Serina Endopeptidases/genética , Subtilisinas , Sequência de Bases , Glicosilação , Dados de Sequência Molecular , Mutação , Proteínas Recombinantes de Fusão/metabolismo , Serina Endopeptidases/metabolismo , Somatomedinas/metabolismo
9.
FEBS Lett ; 294(3): 213-6, 1991 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-1756863

RESUMO

Recombinant human insulin-like growth factor-1 (IGF1) secreted from yeast contains only 10-15% of the active monomer. A majority of the IGF1-like molecules are disulfide bonded dimers. These dimers are not formed in an IGF1 mutant where Lys27 has been replaced by glutamic acid. However, increased levels of secreted BiP (the yeast KAR2 gene product) are seen in cells expressing the mutant. These results imply that by preventing ionic interactions between two IGF1 molecules, intermolecular disulfide bonds do not form in yeast, and that in the mutant there is a structural change which induces BiP, allowing its secretion.


Assuntos
Dissulfetos/química , Proteínas Fúngicas/metabolismo , Glutamina , Proteínas de Choque Térmico HSP70 , Fator de Crescimento Insulin-Like I/química , Lisina , Mutagênese , Sequência de Bases , Western Blotting , DNA/química , DNA/genética , Proteínas Fúngicas/biossíntese , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/fisiologia , Substâncias Macromoleculares , Dados de Sequência Molecular , Estrutura Molecular , Plasmídeos , Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA