Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 291(28): 14483-98, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27226582

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators.


Assuntos
Adenosina Trifosfatases/metabolismo , Ânions/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Catálise , Linhagem Celular , Cricetinae , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Glicólise , Hidrólise , Mutação , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...