Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 27(6): 1631-1640, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33355200

RESUMO

PURPOSE: Tumor mutational burden (TMB) has been shown to be predictive of survival benefit in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors. Measuring TMB in the blood (bTMB) using circulating cell-free tumor DNA (ctDNA) offers practical advantages compared with TMB measurement in tissue (tTMB); however, there is a need for validated assays and identification of optimal cutoffs. We describe the analytic validation of a new bTMB algorithm and its clinical utility using data from the phase III MYSTIC trial. PATIENTS AND METHODS: The dataset used for the clinical validation was from MYSTIC, which evaluated first-line durvalumab (anti-PD-L1 antibody) ± tremelimumab (anticytotoxic T-lymphocyte-associated antigen-4 antibody) or chemotherapy for metastatic NSCLC. bTMB and tTMB were evaluated using the GuardantOMNI and FoundationOne CDx assays, respectively. A Cox proportional hazards model and minimal P value cross-validation approach were used to identify the optimal bTMB cutoff. RESULTS: In MYSTIC, somatic mutations could be detected in ctDNA extracted from plasma samples in a majority of patients, allowing subsequent calculation of bTMB. The success rate for obtaining valid TMB scores was higher for bTMB (809/1,001; 81%) than for tTMB (460/735; 63%). Minimal P value cross-validation analysis confirmed the selection of bTMB ≥20 mutations per megabase (mut/Mb) as the optimal cutoff for clinical benefit with durvalumab + tremelimumab. CONCLUSIONS: Our study demonstrates the feasibility, accuracy, and reproducibility of the GuardantOMNI ctDNA platform for quantifying bTMB from plasma samples. Using the new bTMB algorithm and an optimal bTMB cutoff of ≥20 mut/Mb, high bTMB was predictive of clinical benefit with durvalumab + tremelimumab versus chemotherapy.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/sangue , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/patologia , Mutação , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Casos e Controles , DNA Tumoral Circulante/genética , Ensaios Clínicos Fase III como Assunto , Seguimentos , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Prognóstico , Estudos Retrospectivos
2.
J Immunother Cancer ; 8(1)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32217756

RESUMO

BACKGROUND: Tumor mutational burden (TMB), defined as the number of somatic mutations per megabase of interrogated genomic sequence, demonstrates predictive biomarker potential for the identification of patients with cancer most likely to respond to immune checkpoint inhibitors. TMB is optimally calculated by whole exome sequencing (WES), but next-generation sequencing targeted panels provide TMB estimates in a time-effective and cost-effective manner. However, differences in panel size and gene coverage, in addition to the underlying bioinformatics pipelines, are known drivers of variability in TMB estimates across laboratories. By directly comparing panel-based TMB estimates from participating laboratories, this study aims to characterize the theoretical variability of panel-based TMB estimates, and provides guidelines on TMB reporting, analytic validation requirements and reference standard alignment in order to maintain consistency of TMB estimation across platforms. METHODS: Eleven laboratories used WES data from The Cancer Genome Atlas Multi-Center Mutation calling in Multiple Cancers (MC3) samples and calculated TMB from the subset of the exome restricted to the genes covered by their targeted panel using their own bioinformatics pipeline (panel TMB). A reference TMB value was calculated from the entire exome using a uniform bioinformatics pipeline all members agreed on (WES TMB). Linear regression analyses were performed to investigate the relationship between WES and panel TMB for all 32 cancer types combined and separately. Variability in panel TMB values at various WES TMB values was also quantified using 95% prediction limits. RESULTS: Study results demonstrated that variability within and between panel TMB values increases as the WES TMB values increase. For each panel, prediction limits based on linear regression analyses that modeled panel TMB as a function of WES TMB were calculated and found to approximately capture the intended 95% of observed panel TMB values. Certain cancer types, such as uterine, bladder and colon cancers exhibited greater variability in panel TMB values, compared with lung and head and neck cancers. CONCLUSIONS: Increasing uptake of TMB as a predictive biomarker in the clinic creates an urgent need to bring stakeholders together to agree on the harmonization of key aspects of panel-based TMB estimation, such as the standardization of TMB reporting, standardization of analytical validation studies and the alignment of panel-based TMB values with a reference standard. These harmonization efforts should improve consistency and reliability of panel TMB estimates and aid in clinical decision-making.


Assuntos
Guias como Assunto/normas , Inibidores de Checkpoint Imunológico/uso terapêutico , Carga Tumoral/genética , Simulação por Computador , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Mutação
3.
Clin Cancer Res ; 26(10): 2354-2361, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32102950

RESUMO

PURPOSE: The role of plasma-based tumor mutation burden (pTMB) in predicting response to pembrolizumab-based first-line standard-of-care therapy for metastatic non-small cell lung cancer (mNSCLC) has not been explored. EXPERIMENTAL DESIGN: A 500-gene next-generation sequencing panel was used to assess pTMB. Sixty-six patients with newly diagnosed mNSCLC starting first-line pembrolizumab-based therapy, either alone or in combination with chemotherapy, were enrolled (Clinicaltrial.gov identifier: NCT03047616). Response was assessed using RECIST 1.1. Associations were made for patient characteristics, 6-month durable clinical benefit (DCB), progression-free survival (PFS), and overall survival (OS). RESULTS: Of 66 patients, 52 (78.8%) were pTMB-evaluable. Median pTMB was 16.8 mutations per megabase (mut/Mb; range, 1.9-52.5) and was significantly higher for patients achieving DCB compared with no durable benefit (21.3 mut/Mb vs. 12.4 mut/Mb, P = 0.003). For patients with pTMB ≥ 16 mut/Mb, median PFS was 14.1 versus 4.7 months for patients with pTMB < 16 mut/Mb [HR, 0.30 (0.16-0.60); P < 0.001]. Median OS for patients with pTMB ≥ 16 was not reached versus 8.8 months for patients with pTMB < 16 mut/Mb [HR, 0.48 (0.22-1.03); P = 0.061]. Mutations in ERBB2 exon 20, STK11, KEAP1, or PTEN were more common in patients with no DCB. A combination of pTMB ≥ 16 and absence of negative predictor mutations was associated with PFS [HR, 0.24 (0.11-0.49); P < 0.001] and OS [HR, 0.31 (0.13-0.74); P = 0.009]. CONCLUSIONS: pTMB ≥ 16 mut/Mb is associated with improved PFS after first-line standard-of-care pembrolizumab-based therapy in mNSCLC. STK11/KEAP1/PTEN and ERBB2 mutations may help identify pTMB-high patients unlikely to respond. These results should be validated in larger prospective studies.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Valor Preditivo dos Testes , Estudos Prospectivos , Taxa de Sobrevida , Resultado do Tratamento
4.
Cancer Discov ; 9(2): 210-219, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30425037

RESUMO

A key resistance mechanism to platinum-based chemotherapies and PARP inhibitors in BRCA-mutant cancers is the acquisition of BRCA reversion mutations that restore protein function. To estimate the prevalence of BRCA reversion mutations in high-grade ovarian carcinoma (HGOC), we performed targeted next-generation sequencing of circulating cell-free DNA (cfDNA) extracted from pretreatment and postprogression plasma in patients with deleterious germline or somatic BRCA mutations treated with the PARP inhibitor rucaparib. BRCA reversion mutations were identified in pretreatment cfDNA from 18% (2/11) of platinum-refractory and 13% (5/38) of platinum-resistant cancers, compared with 2% (1/48) of platinum-sensitive cancers (P = 0.049). Patients without BRCA reversion mutations detected in pretreatment cfDNA had significantly longer rucaparib progression-free survival than those with reversion mutations (median, 9.0 vs. 1.8 months; HR, 0.12; P < 0.0001). To study acquired resistance, we sequenced 78 postprogression cfDNA, identifying eight additional patients with BRCA reversion mutations not found in pretreatment cfDNA. SIGNIFICANCE: BRCA reversion mutations are detected in cfDNA from platinum-resistant or platinum-refractory HGOC and are associated with decreased clinical benefit from rucaparib treatment. Sequencing of cfDNA can detect multiple BRCA reversion mutations, highlighting the ability to capture multiclonal heterogeneity.This article is highlighted in the In This Issue feature, p. 151.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Carcinoma Epitelial do Ovário/patologia , DNA Tumoral Circulante/genética , Resistencia a Medicamentos Antineoplásicos/genética , Indóis/uso terapêutico , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , DNA Tumoral Circulante/efeitos dos fármacos , Feminino , Seguimentos , Humanos , Agências Internacionais , Masculino , Pessoa de Meia-Idade , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Prognóstico , Taxa de Sobrevida
5.
Clin Lung Cancer ; 19(6): 518-530.e7, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30279111

RESUMO

INTRODUCTION: The genomic alterations driving resistance to third-generation EGFR tyrosine kinase inhibitors (TKIs) are not well established, and collecting tissue biopsy samples poses potential complications from invasive procedures. Cell-free circulating DNA (cfDNA) testing provides a noninvasive approach to identify potentially targetable mechanisms of resistance. Here we utilized a 70-gene cfDNA next-generation sequencing test to interrogate pretreatment and progression samples from 77 EGFR-mutated non-small cell lung cancer (NSCLC) patients treated with a third-generation EGFR TKI. PATIENTS AND METHODS: Rociletinib was evaluated in advanced or metastatic (second line or higher) disease with EGFR T790M-positive NSCLC in the TIGER-X (NCT01526928) and TIGER-2 (NCT02147990) studies. Plasma samples were collected at baseline and at the time of systemic progression while receiving rociletinib. The critical exons in 70 genes were sequenced in cfDNA isolated from plasma samples to elucidate a comprehensive genomic profile of alterations for each patient. RESULTS: Plasma-based cfDNA analysis identified 93% of the initial EGFR activating and 85% of the EGFR T790M resistance mutations in pretreatment samples with detectable tumor DNA. Profiling of progression samples revealed significant heterogeneity, with different variant types (eg, mutations, amplifications, and fusions) detected in multiple genes (EGFR, MET, RB1) that may be driving resistance in patients. Novel alterations not previously described in association with resistance to third-generation TKIs were also detected, such as an NTRK1 fusion. CONCLUSION: cfDNA next-generation sequencing identified initial EGFR activating and secondary T790M resistance mutations in NSCLC patients with high sensitivity, predicted treatment response equivalent to tissue analysis, and identified multiple novel and established resistance alterations.


Assuntos
Acrilamidas/uso terapêutico , Antinematódeos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Ácidos Nucleicos Livres/análise , Neoplasias Pulmonares/diagnóstico , Pirimidinas/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Resultado do Tratamento
6.
Proc Natl Acad Sci U S A ; 111(51): E5564-73, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25512523

RESUMO

Osteosarcoma is the most common primary bone tumor, yet there have been no substantial advances in treatment or survival in three decades. We examined 59 tumor/normal pairs by whole-exome, whole-genome, and RNA-sequencing. Only the TP53 gene was mutated at significant frequency across all samples. The mean nonsilent somatic mutation rate was 1.2 mutations per megabase, and there was a median of 230 somatic rearrangements per tumor. Complex chains of rearrangements and localized hypermutation were detected in almost all cases. Given the intertumor heterogeneity, the extent of genomic instability, and the difficulty in acquiring a large sample size in a rare tumor, we used several methods to identify genomic events contributing to osteosarcoma survival. Pathway analysis, a heuristic analytic algorithm, a comparative oncology approach, and an shRNA screen converged on the phosphatidylinositol 3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway as a central vulnerability for therapeutic exploitation in osteosarcoma. Osteosarcoma cell lines are responsive to pharmacologic and genetic inhibition of the PI3K/mTOR pathway both in vitro and in vivo.


Assuntos
Neoplasias Ósseas/metabolismo , Genoma Humano , Osteossarcoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Heterogeneidade Genética , Mutação em Linhagem Germinativa , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Proteína Supressora de Tumor p53/genética
7.
Genome Res ; 24(7): 1053-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24823667

RESUMO

Retrotransposons constitute a major source of genetic variation, and somatic retrotransposon insertions have been reported in cancer. Here, we applied TranspoSeq, a computational framework that identifies retrotransposon insertions from sequencing data, to whole genomes from 200 tumor/normal pairs across 11 tumor types as part of The Cancer Genome Atlas (TCGA) Pan-Cancer Project. In addition to novel germline polymorphisms, we find 810 somatic retrotransposon insertions primarily in lung squamous, head and neck, colorectal, and endometrial carcinomas. Many somatic retrotransposon insertions occur in known cancer genes. We find that high somatic retrotransposition rates in tumors are associated with high rates of genomic rearrangement and somatic mutation. Finally, we developed TranspoSeq-Exome to interrogate an additional 767 tumor samples with hybrid-capture exome data and discovered 35 novel somatic retrotransposon insertions into exonic regions, including an insertion into an exon of the PTEN tumor suppressor gene. The results of this large-scale, comprehensive analysis of retrotransposon movement across tumor types suggest that somatic retrotransposon insertions may represent an important class of structural variation in cancer.


Assuntos
Exoma , Genoma Humano , Neoplasias/genética , Retroelementos/genética , Sequência de Bases , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutagênese Insercional , Análise de Sequência de DNA
8.
Nature ; 499(7457): 214-218, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23770567

RESUMO

Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour-normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour-normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.


Assuntos
Heterogeneidade Genética , Mutação/genética , Neoplasias/genética , Oncogenes/genética , Artefatos , Período de Replicação do DNA , Exoma/genética , Reações Falso-Positivas , Expressão Gênica , Genoma Humano/genética , Humanos , Neoplasias Pulmonares/genética , Taxa de Mutação , Neoplasias/classificação , Neoplasias/patologia , Neoplasias de Células Escamosas/genética , Reprodutibilidade dos Testes , Tamanho da Amostra
9.
Nat Biotechnol ; 30(5): 413-21, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22544022

RESUMO

We describe a computational method that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. The method, named ABSOLUTE, can detect subclonal heterogeneity and somatic homozygosity, and it can calculate statistical sensitivity for detection of specific aberrations. We used ABSOLUTE to analyze exome sequencing data from 214 ovarian carcinoma tumor-normal pairs. This analysis identified both pervasive subclonal somatic point-mutations and a small subset of predominantly clonal and homozygous mutations, which were overrepresented in the tumor suppressor genes TP53 and NF1 and in a candidate tumor suppressor gene CDK12. We also used ABSOLUTE to infer absolute allelic copy-number profiles from 3,155 diverse cancer specimens, revealing that genome-doubling events are common in human cancer, likely occur in cells that are already aneuploid, and influence pathways of tumor progression (for example, with recessive inactivation of NF1 being less common after genome doubling). ABSOLUTE will facilitate the design of clinical sequencing studies and studies of cancer genome evolution and intra-tumor heterogeneity.


Assuntos
Análise Mutacional de DNA/métodos , DNA/genética , Técnicas Genéticas , Neoplasias/genética , Alelos , Aneuploidia , Biotecnologia/métodos , Linhagem Celular Tumoral , Separação Celular , Quinases Ciclina-Dependentes/genética , Progressão da Doença , Feminino , Citometria de Fluxo , Dosagem de Genes , Genoma Humano , Homozigoto , Humanos , Masculino , Neurofibromina 1/genética , Neoplasias Ovarianas/genética , Ploidias , Mutação Puntual , Proteína Supressora de Tumor p53/genética
10.
Bioinformatics ; 25(12): i222-30, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19477992

RESUMO

MOTIVATION: Structural variants, including duplications, insertions, deletions and inversions of large blocks of DNA sequence, are an important contributor to human genome variation. Measuring structural variants in a genome sequence is typically more challenging than measuring single nucleotide changes. Current approaches for structural variant identification, including paired-end DNA sequencing/mapping and array comparative genomic hybridization (aCGH), do not identify the boundaries of variants precisely. Consequently, most reported human structural variants are poorly defined and not readily compared across different studies and measurement techniques. RESULTS: We introduce Geometric Analysis of Structural Variants (GASV), a geometric approach for identification, classification and comparison of structural variants. This approach represents the uncertainty in measurement of a structural variant as a polygon in the plane, and identifies measurements supporting the same variant by computing intersections of polygons. We derive a computational geometry algorithm to efficiently identify all such intersections. We apply GASV to sequencing data from nine individual human genomes and several cancer genomes. We obtain better localization of the boundaries of structural variants, distinguish genetic from putative somatic structural variants in cancer genomes, and integrate aCGH and paired-end sequencing measurements of structural variants. This work presents the first general framework for comparing structural variants across multiple samples and measurement techniques, and will be useful for studies of both genetic structural variants and somatic rearrangements in cancer. AVAILABILITY: http://cs.brown.edu/people/braphael/software.html .


Assuntos
Variação Genética , Genômica/métodos , Algoritmos , Sequência de Bases , Hibridização Genômica Comparativa , DNA/química , DNA/classificação , Genoma Humano , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...