Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neuropsychopharmacol ; 22(6): 383-393, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30989210

RESUMO

BACKGROUND: There is an urgent need to identify factors that increase vulnerability to opioid addiction to help stem the opioid epidemic and develop more efficient pharmacotherapeutics. MicroRNAs are small non-coding RNAs that regulate gene expression at a posttranscriptional level and have been implicated in chronic drug-taking in humans and in rodent models. Recent evidence has shown that chronic opioid treatment regulates the microRNA miR-9. The present study was designed to test the hypothesis that miR-9 in the nucleus accumbens potentiates oxycodone addictive-like behavior. METHODS: We utilized adeno-associated virus (AAV) to overexpress miR-9 in the nucleus accumbens of male rats and tested the effects on intravenous self-administration of the highly abused prescription opioid, oxycodone, in 1-hour short-access followed by 6-h long-access sessions, the latter of which leads to escalation of drug intake. In separate rats, we assessed the effects of nucleus accumbens miR-9 overexpression on mRNA targets including RE1-silencing transcription factor (REST) and dopamine D2 receptor (DRD2), which have been shown to be regulated by drugs of abuse. RESULTS: Overexpression of miR-9 in the nucleus accumbens significantly increased oxycodone self-administration compared with rats expressing a control, scrambled microRNA. Analysis of the pattern of oxycodone intake revealed that miR-9 overexpression increased "burst" episodes of intake and decreased the inter-infusion interval. Furthermore, miR-9 overexpression decreased the expression of REST and increased DRD2 in the nucleus accumbens at time points that coincided with behavioral effects. CONCLUSIONS: These results suggest that nucleus accumbens miR-9 regulates oxycodone addictive-like behavior as well as the expression of genes that are involved in drug addiction.


Assuntos
Comportamento Aditivo/fisiopatologia , MicroRNAs/biossíntese , MicroRNAs/fisiologia , Núcleo Accumbens/metabolismo , Oxicodona/farmacologia , Animais , Comportamento Aditivo/induzido quimicamente , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Masculino , Microinjeções , Ratos , Receptores de Dopamina D2/biossíntese , Proteínas Repressoras/biossíntese , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...