Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 9: 629832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738278

RESUMO

Brain is by far the most complex organ in the body. It is involved in the regulation of cognitive, behavioral, and emotional activities. The organ is also a target for many diseases and disorders ranging from injuries to cancers and neurodegenerative diseases. Brain diseases are the main causes of disability and one of the leading causes of deaths. Several drugs that have shown potential in improving brain structure and functioning in animal models face many challenges including the delivery, specificity, and toxicity. For many years, researchers have been facing challenge of developing drugs that can cross the physical (blood-brain barrier), electrical, and chemical barriers of the brain and target the desired region with few adverse events. In recent years, nanotechnology emerged as an important technique for modifying and manipulating different objects at the molecular level to obtain desired features. The technique has proven to be useful in diagnosis as well as treatments of brain diseases and disorders by facilitating the delivery of drugs and improving their efficacy. As the subject is still hot, and new research findings are emerging, it is clear that nanotechnology could upgrade health care systems by providing easy and highly efficient diagnostic and treatment methods. In this review, we will focus on the application of nanotechnology in the diagnosis and treatment of brain diseases and disorders by illuminating the potential of nanoparticles.

2.
J Appl Microbiol ; 131(5): 2131-2147, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33570819

RESUMO

Obesity is considered as a risk factor for chronic health diseases such as heart diseases, cancer and diabetes 2. Reduced physical activities, lifestyle, poor nutritional diet and genetics are among the risk factors associated with the development of obesity. In recent years, several studies have explored the link between the gut microbiome and the progression of diseases including obesity, with the shift in microbiome abundance and composition being the main focus. The alteration of gut microbiome composition affects both nutrients metabolism and specific gene expressions, thereby disturbing body physiology. Specifically, the abundance of fibre-metabolizing microbes is associated with weight loss and that of protein and fat-metabolizing bacteria with weight gain. Various internal and external factors such as genetics, maternal obesity, mode of delivery, breastfeeding, nutrition, antibiotic use and the chemical compounds present in the environment are known to interfere with the richness of the gut microbiota (GM), thus influencing weight gain/loss and ultimately the development of obesity. However, the effectiveness of each factor in potentiating the shift in microbes' abundance to result in significant changes that can lead to obesity is not yet clear. In this review, we will highlight the factors involved in shaping GM, their influence on obesity and possible interventions. Understanding the influence of these factors on the diversity of the GM and how to improve their effectiveness on disease conditions could be keys in the treatment of metabolic diseases.


Assuntos
Microbioma Gastrointestinal , Bactérias , Fibras na Dieta , Feminino , Humanos , Obesidade , Gravidez , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...