Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 49(12): 3243-3254, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34282493

RESUMO

We present a computational multiscale model for the efficient simulation of vascularized tissues, composed of an elastic three-dimensional matrix and a vascular network. The effect of blood vessel pressure on the elastic tissue is surrogated via hyper-singular forcing terms in the elasticity equations, which depend on the fluid pressure. In turn, the blood flow in vessels is treated as a one-dimensional network. Intravascular pressure and velocity are simulated using a high-order finite volume scheme, while the elasticity equations for the tissue are solved using a finite element method. This work addresses the feasibility and the potential of the proposed coupled multiscale model. In particular, we assess whether the multiscale model is able to reproduce the tissue response at the effective scale (of the order of millimeters) while modeling the vasculature at the microscale. We validate the multiscale method against a full scale (three-dimensional) model, where the fluid/tissue interface is fully discretized and treated as a Neumann boundary for the elasticity equation. Next, we present simulation results obtained with the proposed approach in a realistic scenario, demonstrating that the method can robustly and efficiently handle the one-way coupling between complex fluid microstructures and the elastic matrix.


Assuntos
Tecido Elástico/irrigação sanguínea , Hemodinâmica/fisiologia , Modelos Cardiovasculares , Simulação por Computador , Análise de Elementos Finitos
2.
Int J Numer Method Biomed Eng ; 35(12): e3264, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31508902

RESUMO

We consider a multiscale approach based on immersed methods for the efficient computational modeling of tissues composed of an elastic matrix (in two or three dimensions) and a thin vascular structure (treated as a co-dimension two manifold) at a given pressure. We derive different variational formulations of the coupled problem, in which the effect of the vasculature can be surrogated in the elasticity equations via singular or hypersingular forcing terms. These terms only depend on information defined on co-dimension two manifolds (such as vessel center line, cross-sectional area, and mean pressure over cross section), thus drastically reducing the complexity of the computational model. We perform several numerical tests, ranging from simple cases with known exact solutions to the modeling of materials with random distributions of vessels. In the latter case, we use our immersed method to perform an in silico characterization of the mechanical properties of the effective biphasic material tissue via statistical simulations.


Assuntos
Modelos Biológicos , Algoritmos , Vasos Sanguíneos/fisiologia , Elasticidade , Análise de Elementos Finitos , Pressão
3.
Soft Robot ; 5(4): 410-424, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29762082

RESUMO

Interest in the design of bioinspired robotic microswimmers is growing rapidly, motivated by the spectacular capabilities of their unicellular biological templates. Predicting the swimming speed and efficiency of such devices in a reliable way is essential for their rational design, and to optimize their performance. The hydrodynamic simulations needed for this purpose are demanding and simplified models that neglect nonlocal hydrodynamic interactions (e.g., resistive force theory for slender, filament-like objects that are the typical propulsive apparatus for unicellular swimmers) are commonly used. We show through a detailed case study of a model robotic system consisting of a spherical head powered by a rotating helical flagellum that (a) the errors one makes in the prediction of swimming speed and efficiency by neglecting hydrodynamic interactions are never quite acceptable and (b) there are simple ways to correct the predictions of the simplified theories to make them more accurate. We also formulate optimal design problems for the length of the helical flagellum giving maximal energetic efficiency, maximal distance traveled per motor turn, or maximal distance traveled per unit of work expended, and exhibit optimal solutions.


Assuntos
Natação , Simulação por Computador , Desenho de Equipamento , Flagelos , Hidrodinâmica , Modelos Biológicos , Robótica
4.
Proc Natl Acad Sci U S A ; 109(44): 17874-9, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23047705

RESUMO

Euglenids exhibit an unconventional motility strategy amongst unicellular eukaryotes, consisting of large-amplitude highly concerted deformations of the entire body (euglenoid movement or metaboly). A plastic cell envelope called pellicle mediates these deformations. Unlike ciliary or flagellar motility, the biophysics of this mode is not well understood, including its efficiency and molecular machinery. We quantitatively examine video recordings of four euglenids executing such motions with statistical learning methods. This analysis reveals strokes of high uniformity in shape and pace. We then interpret the observations in the light of a theory for the pellicle kinematics, providing a precise understanding of the link between local actuation by pellicle shear and shape control. We systematically understand common observations, such as the helical conformations of the pellicle, and identify previously unnoticed features of metaboly. While two of our euglenids execute their stroke at constant body volume, the other two exhibit deviations of about 20% from their average volume, challenging current models of low Reynolds number locomotion. We find that the active pellicle shear deformations causing shape changes can reach 340%, and estimate the velocity of the molecular motors. Moreover, we find that metaboly accomplishes locomotion at hydrodynamic efficiencies comparable to those of ciliates and flagellates. Our results suggest new quantitative experiments, provide insight into the evolutionary history of euglenids, and suggest that the pellicle may serve as a model for engineered active surfaces with applications in microfluidics.


Assuntos
Euglênidos , Fenômenos Biomecânicos , Biofísica , Euglênidos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...