Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Anesthesiol ; 23(1): 391, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030979

RESUMO

BACKGROUND: Machine-learning models may improve prediction of length of stay (LOS) and morbidity after surgery. However, few studies include fast-track programs, and most rely on administrative coding with limited follow-up and information on perioperative care. This study investigates potential benefits of a machine-learning model for prediction of postoperative morbidity in fast-track total hip (THA) and knee arthroplasty (TKA). METHODS: Cohort study in consecutive unselected primary THA/TKA between 2014-2017 from seven Danish centers with established fast-track protocols. Preoperative comorbidity and prescribed medication were recorded prospectively and information on length of stay and readmissions was obtained through the Danish National Patient Registry and medical records. We used a machine-learning model (Boosted Decision Trees) based on boosted decision trees with 33 preoperative variables for predicting "medical" morbidity leading to LOS > 4 days or 90-days readmissions and compared to a logistical regression model based on the same variables. We also evaluated two parsimonious models, using the ten most important variables in the full machine-learning and logistic regression models. Data collected between 2014-2016 (n:18,013) was used for model training and data from 2017 (n:3913) was used for testing. Model performances were analyzed using precision, area under receiver operating (AUROC) and precision recall curves (AUPRC), as well as the Mathews Correlation Coefficient. Variable importance was analyzed using Shapley Additive Explanations values. RESULTS: Using a threshold of 20% "risk-patients" (n:782), precision, AUROC and AUPRC were 13.6%, 76.3% and 15.5% vs. 12.4%, 74.7% and 15.6% for the machine-learning and logistic regression model, respectively. The parsimonious machine-learning model performed better than the full logistic regression model. Of the top ten variables, eight were shared between the machine-learning and logistic regression models, but with a considerable age-related variation in importance of specific types of medication. CONCLUSION: A machine-learning model using preoperative characteristics and prescriptions slightly improved identification of patients in high-risk of "medical" complications after fast-track THA and TKA compared to a logistic regression model. Such algorithms could help find a manageable population of patients who may benefit most from intensified perioperative care.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Humanos , Estudos de Coortes , Artroplastia do Joelho/efeitos adversos , Modelos Logísticos , Morbidade , Aprendizado de Máquina , Artroplastia de Quadril/efeitos adversos , Tempo de Internação
2.
Cell Syst ; 14(5): 382-391.e5, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37201507

RESUMO

Control of dynamical processes is vital for maintaining correct cell regulation and cell-fate decisions. Numerous regulatory networks show oscillatory behavior; however, our knowledge of how one oscillator behaves when stimulated by two or more external oscillatory signals is still missing. We explore this problem by constructing a synthetic oscillatory system in yeast and stimulate it with two external oscillatory signals. Letting model verification and prediction operate in a tight interplay with experimental observations, we find that stimulation with two external signals expands the plateau of entrainment and reduces the fluctuations of oscillations. Furthermore, by adjusting the phase differences of external signals, one can control the amplitude of oscillations, which is understood through the signal delay of the unperturbed oscillatory network. With this we reveal a direct amplitude dependency of downstream gene transcription. Taken together, these results suggest a new path to control oscillatory systems by coupled oscillator cooperativity.


Assuntos
Ciclo Celular , Diferenciação Celular , Fenômenos Cronobiológicos
3.
Cell ; 185(23): 4394-4408.e10, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368307

RESUMO

Living organisms are constantly exposed to DNA damage, and optimal repair is therefore crucial. A characteristic hallmark of the response is the formation of sub-compartments around the site of damage, known as foci. Following multiple DNA breaks, the transcription factor p53 exhibits oscillations in its nuclear concentration, but how this dynamics can affect the repair remains unknown. Here, we formulate a theory for foci formation through droplet condensation and discover how oscillations in p53, with its specific periodicity and amplitude, optimize the repair process by preventing Ostwald ripening and distributing protein material in space and time. Based on the theory predictions, we reveal experimentally that the oscillatory dynamics of p53 does enhance the repair efficiency. These results connect the dynamical signaling of p53 with the microscopic repair process and create a new paradigm for the interplay of complex dynamics and phase transitions in biology.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Reparo do DNA , Dano ao DNA , Transdução de Sinais/fisiologia
4.
R Soc Open Sci ; 9(9): 220018, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36117868

RESUMO

The modelling of pandemics has become a critical aspect in modern society. Even though artificial intelligence can help the forecast, the implementation of ordinary differential equations which estimate the time development in the number of susceptible, (exposed), infected and recovered (SIR/SEIR) individuals is still important in order to understand the stage of the pandemic. These models are based on simplified assumptions which constitute approximations, but to what extent this are erroneous is not understood since many factors can affect the development. In this paper, we introduce an agent-based model including spatial clustering and heterogeneities in connectivity and infection strength. Based on Danish population data, we estimate how this impacts the early prediction of a pandemic and compare this to the long-term development. Our results show that early phase SEIR model predictions overestimate the peak number of infected and the equilibrium level by at least a factor of two. These results are robust to variations of parameters influencing connection distances and independent of the distribution of infection rates.

5.
Front Cell Dev Biol ; 10: 910738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35794861

RESUMO

The transcription factor NF-κB plays a vital role in the control of the immune system, and following stimulation with TNF-α its nuclear concentration shows oscillatory behaviour. How environmental factors, in particular temperature, can control the oscillations and thereby affect gene stimulation is still remains to be resolved question. In this work, we reveal that the period of the oscillations decreases with increasing temperature. We investigate this using a mathematical model, and by applying results from statistical physics, we introduce temperature dependency to all rates, resulting in a remarkable correspondence between model and experiments. Our model predicts how temperature affects downstream protein production and find a crossover, where high affinity genes upregulates at high temperatures. Finally, we show how or that oscillatory temperatures can entrain NF-κB oscillations and lead to chaotic dynamics presenting a simple path to chaotic conditions in cellular biology.

7.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35165198

RESUMO

Parkinson's disease (PD) results from a loss of dopaminergic neurons. What triggers the break-down of neuronal signaling, and how this might be compensated, is not understood. The age of onset, progression and symptoms vary between patients, and our understanding of the clinical variability remains incomplete. In this study, we investigate this, by characterizing the dopaminergic landscape in healthy and denervated striatum, using biophysical modeling. Based on currently proposed mechanisms, we model three distinct denervation patterns, and show how this affect the dopaminergic network. Depending on the denervation pattern, we show how local and global differences arise in the activity of striatal neurons. Finally, we use the mathematical formalism to suggest a cellular strategy for maintaining normal dopamine (DA) signaling following neuronal denervation. This strategy is characterized by dual enhancement of both the release and uptake capacity of DA in the remaining neurons. Overall, our results derive a new conceptual framework for the impaired dopaminergic signaling related to PD and offers testable predictions for future research directions.


Assuntos
Dopamina , Doença de Parkinson , Corpo Estriado/fisiologia , Denervação , Dopamina/fisiologia , Neurônios Dopaminérgicos , Humanos
8.
Elife ; 102021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34677123

RESUMO

The spatial organization of complex biochemical reactions is essential for the regulation of cellular processes. Membrane-less structures called foci containing high concentrations of specific proteins have been reported in a variety of contexts, but the mechanism of their formation is not fully understood. Several competing mechanisms exist that are difficult to distinguish empirically, including liquid-liquid phase separation, and the trapping of molecules by multiple binding sites. Here, we propose a theoretical framework and outline observables to differentiate between these scenarios from single molecule tracking experiments. In the binding site model, we derive relations between the distribution of proteins, their diffusion properties, and their radial displacement. We predict that protein search times can be reduced for targets inside a liquid droplet, but not in an aggregate of slowly moving binding sites. We use our results to reject the multiple binding site model for Rad52 foci, and find a picture consistent with a liquid-liquid phase separation. These results are applicable to future experiments and suggest different biological roles for liquid droplet and binding site foci.


Assuntos
Membrana Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Difusão , Modelos Biológicos , Domínios Proteicos
9.
Integr Biol (Camb) ; 13(8): 197-209, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34278428

RESUMO

How cells sense and respond to mechanical stimuli remains an open question. Recent advances have identified the translocation of Yes-associated protein (YAP) between nucleus and cytoplasm as a central mechanism for sensing mechanical forces and regulating mechanotransduction. We formulate a spatiotemporal model of the mechanotransduction signalling pathway that includes coupling of YAP with the cell force-generation machinery through the Rho family of GTPases. Considering the active and inactive forms of a single Rho protein (GTP/GDP-bound) and of YAP (non-phosphorylated/phosphorylated), we study the cross-talk between cell polarization due to active Rho and YAP activation through its nuclear localization. For fixed mechanical stimuli, our model predicts stationary nuclear-to-cytoplasmic YAP ratios consistent with experimental data at varying adhesive cell area. We further predict damped and even sustained oscillations in the YAP nuclear-to-cytoplasmic ratio by accounting for recently reported positive and negative YAP-Rho feedback. Extending the framework to time-varying mechanical stimuli that simulate cyclic stretching and compression, we show that the YAP nuclear-to-cytoplasmic ratio's time dependence follows that of the cyclic mechanical stimulus. The model presents one of the first frameworks for understanding spatiotemporal YAP mechanotransduction, providing several predictions of possible YAP localization dynamics, and suggesting new directions for experimental and theoretical studies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Mecanotransdução Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
10.
Cell Syst ; 12(4): 291-303, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33887201

RESUMO

The fundamental mechanisms that control and regulate biological organisms exhibit a surprising level of complexity. Oscillators are perhaps the simplest motifs that produce time-varying dynamics and are ubiquitous in biological systems. It is also known that such biological oscillators interact with each other-for instance, circadian oscillators affect the cell cycle, and somitogenesis clock proteins in adjacent cells affect each other in developing embryos. Therefore, it is vital to understand the effects that can emerge from non-linear interaction between oscillations. Here, we show how oscillations typically arise in biology and take the reader on a tour through the great variety in dynamics that can emerge even from a single pair of coupled oscillators. We explain how chaotic dynamics can emerge and outline the methods of detecting this in experimental time traces. Finally, we discuss the potential role of such complex dynamical features in biological systems.


Assuntos
Relógios Biológicos/fisiologia , Biologia , Humanos
11.
Elife ; 102021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33543712

RESUMO

In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA.


Assuntos
Proteína Rad52 de Recombinação e Reparo de DNA/química , Proteína de Replicação A/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Imagem Individual de Molécula , Dano ao DNA
12.
Nat Commun ; 11(1): 4827, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973167

RESUMO

In bacteria, translation re-initiation is crucial for synthesizing proteins encoded by genes that are organized into operons. The mechanisms regulating translation re-initiation remain, however, poorly understood. We now describe the ribosome termination structure (RTS), a conserved and stable mRNA secondary structure localized immediately downstream of stop codons, and provide experimental evidence for its role in governing re-initiation efficiency in a synthetic Escherichia coli operon. We further report that RTSs are abundant, being associated with 18%-65% of genes in 128 analyzed bacterial genomes representing all phyla, and are selectively depleted when translation re-initiation is advantageous yet selectively enriched so as to insulate translation when re-initiation is deleterious. Our results support a potentially universal role for the RTS in controlling translation termination-insulation and re-initiation across bacteria.


Assuntos
Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon/genética , RNA Mensageiro/química , RNA Mensageiro/fisiologia , Bactérias/classificação , Bactérias/genética , Códon de Terminação/metabolismo , Escherichia coli/metabolismo , Genes Bacterianos/genética , Iniciação Traducional da Cadeia Peptídica , Estrutura Secundária de Proteína , RNA Mensageiro/genética , Ribossomos/metabolismo
13.
Cell Syst ; 9(6): 548-558.e5, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31812692

RESUMO

The tumor-suppressive transcription factor p53 is a master regulator of stress responses. In non-stressed conditions, p53 is maintained at low levels by the ubiquitin ligase Mdm2 and its binding partner Mdmx. Mdmx depletion leads to a biphasic p53 response, with an initial post-mitotic pulse followed by oscillations. The mechanism underlying this dynamical behavior is unknown. Two different roles for Mdmx have been proposed: enhancing p53 ubiquitination by Mdm2 and inhibiting p53 activity. Here, we developed a mathematical model of the p53/Mdm2/Mdmx network to investigate which Mdmx functions quantitatively affect specific features of p53 dynamics under various conditions. We found that enhancement of Mdm2 activity was the most critical role of Mdmx under unstressed conditions. The model also accurately predicted p53 dynamics in Mdmx-depleted cells following DNA damage. This work outlines a strategy for rapidly testing possible network interactions to reveal those most impactful in regulating the dynamics of key proteins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ciclo Celular/genética , Dano ao DNA , Humanos , Células MCF-7 , Modelos Teóricos , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Ubiquitinação
14.
Nat Commun ; 10(1): 71, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622249

RESUMO

The control of proteins by a transcription factor with periodically varying concentration exhibits intriguing dynamical behaviour. Even though it is accepted that transcription factors vary their dynamics in response to different situations, insight into how this affects downstream genes is lacking. Here, we investigate how oscillations and chaotic dynamics in the transcription factor NF-κB can affect downstream protein production. We describe how it is possible to control the effective dynamics of the transcription factor by stimulating it with an oscillating ligand. We find that chaotic dynamics modulates gene expression and up-regulates certain families of low-affinity genes, even in the presence of extrinsic and intrinsic noise. Furthermore, this leads to an increase in the production of protein complexes and the efficiency of their assembly. Finally, we show how chaotic dynamics creates a heterogeneous population of cell states, and describe how this can be beneficial in multi-toxic environments.


Assuntos
Regulação da Expressão Gênica/fisiologia , Modelos Genéticos , NF-kappa B/metabolismo , Ligantes , Dinâmica não Linear
15.
Cell Syst ; 5(6): 591-603.e4, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29248375

RESUMO

Previous studies have suggested that changes in extracellular ion concentrations initiate the transition from an activity state that characterizes sleep in cortical neurons to states that characterize wakefulness. However, because neuronal activity and extracellular ion concentrations are interdependent, isolating their unique roles during sleep-wake transitions is not possible in vivo. Here, we extend the Averaged-Neuron model and demonstrate that, although changes in extracellular ion concentrations occur concurrently, decreasing the conductance of calcium-dependent potassium channels initiates the transition from sleep to wakefulness. We find that sleep is governed by stable, self-sustained oscillations in neuronal firing patterns, whereas the quiet awake state and active awake state are both governed by irregular oscillations and chaotic dynamics; transitions between these separable awake states are prompted by ionic changes. Although waking is indicative of a shift from stable to chaotic neuronal firing patterns, we illustrate that the properties of chaotic dynamics ensure that the transition between states is smooth and robust to noise.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Canais de Potássio/metabolismo , Sono , Vigília , Animais , Fenômenos Eletrofisiológicos , Espaço Extracelular , Humanos , Íons/metabolismo
16.
Biochemistry ; 56(16): 2161-2165, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28394580

RESUMO

The photoautotrophic freshwater cyanobacterium Synechococcus elongatus is widely used as a chassis for biotechnological applications as well as a photosynthetic bacterial model. In this study, a method for expanding the genetic code of this cyanobacterium has been established, thereby allowing the incorporation of unnatural amino acids into proteins. This was achieved through UAG stop codon suppression, using an archaeal pyrrolysyl orthogonal translation system. We demonstrate incorporation of unnatural amino acids into green fluorescent protein with 20 ± 3.5% suppression efficiency. The introduced components were shown to be orthogonal to the host translational machinery. In addition, we observed that no significant growth impairment resulted from the integration of the system. To interpret the observations, we modeled and investigated the competition over the UAG codon between release factor 1 and pyl-tRNACUA. On the basis of the model results, and the fact that 39.6% of the stop codons in the S. elongatus genome are UAG stop codons, the suppression efficiency in S. elongatus is unexpectedly high. The reason for this unexpected suppression efficiency has yet to be determined.


Assuntos
Código Genético , Synechococcus/genética , Códon de Terminação , Genes Bacterianos
17.
ACS Synth Biol ; 6(6): 1076-1085, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28230975

RESUMO

Protein synthesis in cells has been thoroughly investigated and characterized over the past 60 years. However, some fundamental issues remain unresolved, including the reasons for genetic code redundancy and codon bias. In this study, we changed the kinetics of the Eschrichia coli transcription and translation processes by mutating the promoter and ribosome binding domains and by using genetic code expansion. The results expose a counterintuitive phenomenon, whereby an increase in the initiation rates of transcription and translation lead to a decrease in protein expression. This effect can be rescued by introducing slow translating codons into the beginning of the gene, by shortening gene length or by reducing initiation rates. On the basis of the results, we developed a biophysical model, which suggests that the density of co-transcriptional-translation plays a role in bacterial protein synthesis. These findings indicate how cells use codon bias to tune translation speed and protein synthesis.


Assuntos
Escherichia coli/genética , Modelos Genéticos , Biossíntese de Proteínas/genética , Proteínas Recombinantes/genética , Aminoácidos/química , Aminoácidos/metabolismo , Códon/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Recombinantes/metabolismo
18.
Cell Syst ; 3(6): 532-539.e3, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28009264

RESUMO

Oscillations and noise drive many processes in biology, but how both affect the activity of the transcription factor nuclear factor κB (NF-κB) is not understood. Here, we observe that when NF-κB oscillations are entrained by periodic tumor necrosis factor (TNF) inputs in experiments, NF-κB exhibits jumps between frequency modes, a phenomenon we call "cellular mode-hopping." By comparing stochastic simulations of NF-κB oscillations to deterministic simulations conducted inside and outside the chaotic regime of parameter space, we show that noise facilitates mode-hopping in all regimes. However, when the deterministic system is driven by chaotic dynamics, hops between modes are erratic and short-lived, whereas in experiments, the system spends several periods in one entrainment mode before hopping and rarely visits more than two modes. The experimental behavior matches our simulations of noise-induced mode-hopping outside the chaotic regime. We suggest that mode-hopping is a mechanism by which different NF-κB-dependent genes under frequency control can be expressed at different times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...