Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Clin Transl Med ; 14(6): e1733, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877637

RESUMO

BACKGROUND AND AIMS: Smoking is recognised as an independent risk factor in the development of chronic pancreatitis (CP). Cystic fibrosis transmembrane conductance regulator (CFTR) function and ductal fluid and bicarbonate secretion are also known to be impaired in CP, so it is crucial to understand the relationships between smoking, pancreatic ductal function and the development of CP. METHODS: We measured sweat chloride (Cl-) concentrations in patients with and without CP, both smokers and non-smokers, to assess CFTR activity. Serum heavy metal levels and tissue cadmium concentrations were determined by mass spectrometry in smoking and non-smoking patients. Guinea pigs were exposed to cigarette smoke, and cigarette smoke extract (CSE) was prepared to characterise its effects on pancreatic HCO3 - and fluid secretion and CFTR function. We administered cerulein to both the smoking and non-smoking groups of mice to induce pancreatitis. RESULTS: Sweat samples from smokers, both with and without CP, exhibited elevated Cl- concentrations compared to those from non-smokers, indicating a decrease in CFTR activity due to smoking. Pancreatic tissues from smokers, regardless of CP status, displayed lower CFTR expression than those from non-smokers. Serum levels of cadmium and mercury, as well as pancreatic tissue cadmium, were increased in smokers. Smoking, CSE, cadmium, mercury and nicotine all hindered fluid and HCO3 - secretion and CFTR activity in pancreatic ductal cells. These effects were mediated by sustained increases in intracellular calcium ([Ca2+]i), depletion of intracellular ATP (ATPi) and mitochondrial membrane depolarisation. CONCLUSION: Smoking impairs pancreatic ductal function and contributes to the development of CP. Heavy metals, notably cadmium, play a significant role in the harmful effects of smoking. KEY POINTS: Smoking and cigarette smoke extract diminish pancreatic ductal fluid and HCO3 - secretion as well as the expression and function of CFTR Cd and Hg concentrations are significantly higher in the serum samples of smokers Cd accumulates in the pancreatic tissue of smokers.


Assuntos
Metais Pesados , Pancreatite Crônica , Humanos , Pancreatite Crônica/metabolismo , Pancreatite Crônica/induzido quimicamente , Animais , Metais Pesados/metabolismo , Masculino , Camundongos , Feminino , Pessoa de Meia-Idade , Cobaias , Adulto , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fumar/efeitos adversos , Fumar/metabolismo , Modelos Animais de Doenças
2.
Pain Rep ; 9(4): e1167, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873615

RESUMO

A 2-day closed workshop was held in Liverpool, United Kingdom, to discuss the results of research concerning symptom-based disorders (SBDs) caused by autoantibodies, share technical knowledge, and consider future plans. Twenty-two speakers and 14 additional participants attended. This workshop set out to consolidate knowledge about the contribution of autoantibodies to SBDs. Persuasive evidence for a causative role of autoantibodies in disease often derives from experimental "passive transfer" approaches, as first established in neurological research. Here, serum immunoglobulin (IgM or IgG) is purified from donated blood and transferred to rodents, either systemically or intrathecally. Rodents are then assessed for the expression of phenotypes resembling the human condition; successful phenotype transfer is considered supportive of or proof for autoimmune pathology. Workshop participants discussed passive transfer models and wider evidence for autoantibody contribution to a range of SBDs. Clinical trials testing autoantibody reduction were presented. Cornerstones of both experimental approaches and clinical trial parameters in this field were distilled and presented in this article. Mounting evidence suggests that immunoglobulin transfer from patient donors often induces the respective SBD phenotype in rodents. Understanding antibody binding epitopes and downstream mechanisms will require substantial research efforts, but treatments to reduce antibody titres can already now be evaluated.

3.
Cancers (Basel) ; 16(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791867

RESUMO

Bone cancer and its related chronic pain are huge clinical problems since the available drugs are often ineffective or cannot be used long term due to a broad range of side effects. The mechanisms, mediators and targets need to be identified to determine potential novel therapies. Here, we characterize a mouse bone cancer model induced by intratibial injection of K7M2 osteosarcoma cells using an integrative approach and investigate the role of capsaicin-sensitive peptidergic sensory nerves. The mechanical pain threshold was assessed by dynamic plantar aesthesiometry, limb loading by dynamic weight bearing, spontaneous pain-related behaviors via observation, knee diameter with a digital caliper, and structural changes by micro-CT and glia cell activation by immunohistochemistry in BALB/c mice of both sexes. Capsaicin-sensitive peptidergic sensory neurons were defunctionalized by systemic pretreatment with a high dose of the transient receptor potential vanilloid 1 (TRPV1) agonist resiniferatoxin (RTX). During the 14- and 28-day experiments, weight bearing on the affected limb and the paw mechanonociceptive thresholds significantly decreased, demonstrating secondary mechanical hyperalgesia. Signs of spontaneous pain and osteoplastic bone remodeling were detected both in male and female mice without any sex differences. Microglia activation was shown by the increased ionized calcium-binding adapter molecule 1 (Iba1) immunopositivity on day 14 and astrocyte activation by the enhanced glial fibrillary acidic protein (GFAP)-positive cell density on day 28 in the ipsilateral spinal dorsal horn. Interestingly, defunctionalization of the capsaicin-sensitive afferents representing approximately 2/3 of the nociceptive fibers did not alter any functional parameters. Here, we provide the first complex functional and morphological characterization of the K7M2 mouse osteosarcoma model. Bone-cancer-related chronic pain and hyperalgesia are likely to be mediated by central sensitization involving neuroinflammation via glial cell activation in the spinal dorsal horn, but not the capsaicin-sensitive sensory neuronal system.

4.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731855

RESUMO

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Assuntos
Esfingomielina Fosfodiesterase , Canais de Cátion TRPM , beta-Ciclodextrinas , Animais , Humanos , Camundongos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , beta-Ciclodextrinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células CHO , Colesterol/metabolismo , Cricetulus , Modelos Animais de Doenças , Células HEK293 , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/metabolismo , Pregnenolona/farmacologia , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/farmacologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Pirimidinonas/farmacologia
5.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612571

RESUMO

Osteosarcoma is a highly malignant, painful cancer with poor treatment opportunities and a bad prognosis. Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are non-selective cation channels that have been of great interest in cancer, as their expression is increased in some malignancies. In our study we aim to characterize the expression and functionality of the TRPA1 and TRPV1 channels in human and mouse osteosarcoma tissues and in a mouse cell line. TRPA1/Trpa1 and TRPV1/Trpv1 mRNA expressions were demonstrated by PCR gel electrophoresis and RNAscope in situ hybridization. The function of these channels was confirmed by their radioactive 45Ca2+ uptake in response to the TRPA1 agonist, Allyl-isothiocyanate (AITC), and TRPV1 agonist, capsaicin, in K7M2 cells. An ATP-based K2M7 cell viability luminescence assay was used to determine cell viability after AITC or capsaicin treatments. Both TRPA1/Trpa1 and TRPV1/Trpv1 were expressed similarly in human and mouse osteosarcoma tissues, while Trpa1 transcripts were more abundantly present in K7M2 cells. TRPA1 activation with 200 µM AITC induced a significant 45Ca2+ influx into K7M2 cells, and the antagonist attenuated this effect. In accordance with the lower Trpv1 expression, capsaicin induced a moderate 45Ca2+ uptake, which did not reach the level of statistical significance. Both AITC and capsaicin significantly reduced K7M2 cell viability, demonstrating EC50 values of 22 µM and 74 µM. The viability-decreasing effect of AITC was significantly but only partially antagonized by HC-030031, but the action of capsaicin was not affected by the TRPV1 antagonist capsazepine. We provide here the first data on the functional expression of the TRPA1 and TRPV1 ion channels in osteosarcoma, suggesting novel diagnostic and/or therapeutic perspectives.


Assuntos
Neoplasias Ósseas , Radioisótopos de Cálcio , Isotiocianatos , Osteossarcoma , Canal de Cátion TRPA1 , Canais de Cátion TRPV , Animais , Humanos , Camundongos , Neoplasias Ósseas/genética , Capsaicina/farmacologia , Osteossarcoma/genética , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
6.
Front Cell Dev Biol ; 12: 1334130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481530

RESUMO

Transient Receptor Potential Vanilloid 1 (TRPV1) and Ankyrin 1 (TRPA1) are nonselective cation channels expressed in primary sensory neurons and several other non-neuronal structures such as immune cells, keratinocytes, and vascular smooth muscle cells. They play important roles in nociception, pain processing and their chanellopathies are associated with the development of several pathological conditions. They are located in cholesterol- and sphingolipid-rich membrane lipid raft regions serving as platforms to modulate their activations. We demonstrated earlier that disruption of these lipid rafts leads to decreased TRP channel activation and exerts analgesic effects. Cyclodextrins are macrocyclic molecules able to form host-guest complexes with cholesterol and deplete it from the membrane lipid rafts. The aim of this study was to investigate 8 structurally different (methylated and non-methylated) CD derivatives on cell viability, mitochondrial membrane potential, membrane composition and activation abilities of the TRPV1 and TRPA1 channels. We showed that non-methylated derivatives have preferable safety profiles compared to methylated ones. Furthermore, methylated derivatives reduced mitochondrial membrane potential. However, all investigated derivatives influence the ordered cell membrane structure depleting membrane cholesterol and inhibit the TRPV1 agonist capsaicin- and the TRPA1 agonist allyl isothiocyanate-induced Ca2+-influx. This mechanism of action might provide novel perspectives for the development of peripherally acting analgesics via indirectly decreasing the generation and transmission of nociceptive signals.

7.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542266

RESUMO

Numerous studies have indicated a link between vaccines and the exacerbation of autoimmune diseases including rheumatoid arthritis (RA). However, there is no consensus in clinical practice regarding the optimal timing of immunization. Therefore, this study aimed to investigate the impact of the 3Fluart influenza vaccine on the complete Freund's adjuvant (CFA)-induced chronic arthritis rat model and to identify new biomarkers with clinical utility. CFA was injected into the plantar surface of one hind paw and the root of the tail on day 0, and the tail root injection was repeated on day 1. Flu vaccination was performed on day 1 or 7. Paw volume was measured by plethysmometry, mechanonociceptive threshold by dynamic plantar aesthesiometry, neutrophil myeloperoxidase (MPO) activity, and vascular leakage using in vivo optical imaging throughout the 21-day experiment. Inflammatory markers were determined by Western blot and histopathology. CFA-induced swelling, an increase in MPO activity, plasma extravasation in the tibiotarsal joint. Mechanical hyperalgesia of the hind paw was observed 3 days after the injection, which gradually decreased. Co-administration of the flu vaccine on day 7 but not on day 1 resulted in significantly increased heme oxygenase 1 (HO-1) expression. The influenza vaccination appears to have a limited impact on the progression and severity of the inflammatory response and associated pain. Nevertheless, delayed vaccination could alter the disease activity, as indicated by the findings from assessments of edema and inflammatory biomarkers. HO-1 may serve as a potential marker for the severity of inflammation, particularly in the case of delayed vaccination. However, further investigation is needed to fully understand the regulation and role of HO-1, a task that falls outside the scope of the current study.


Assuntos
Artrite Experimental , Influenza Humana , Ratos , Animais , Humanos , Artrite Experimental/metabolismo , Adjuvante de Freund/efeitos adversos , Hiperalgesia/metabolismo , Inflamação , Vacinação , Progressão da Doença
8.
Curr Opin Pharmacol ; 75: 102432, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38290404

RESUMO

Chronic pain conditions are unmet medical needs, since the available drugs, opioids, non-steroidal anti-inflammatory/analgesic drugs and adjuvant analgesics do not provide satisfactory therapeutic effect in a great proportion of patients. Therefore, there is an urgent need to find novel targets and novel therapeutic approaches that differ from classical pharmacological receptor antagonism. Most ion channels and receptors involved in pain sensation and processing such as Transient Receptor Potential ion channels, opioid receptors, P2X purinoreceptors and neurokinin 1 receptor are located in the lipid raft regions of the plasma membrane. Targeting the membrane lipid composition and structure by sphingolipid or cholesterol depletion might open future perspectives for the therapy of chronic inflammatory, neuropathic or cancer pain, most importantly acting at the periphery.


Assuntos
Analgesia , Dor , Humanos , Dor/tratamento farmacológico , Dor/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Doença Crônica , Canais Iônicos/uso terapêutico
9.
Temperature (Austin) ; 10(1): 13-34, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38059854

RESUMO

This paper is dedicated to the memory of János Szolcsányi (1938-2018), an outstanding Hungarian scientist. Among analgesics that act on pain receptors, he identified capsaicin as a selective lead molecule. He studied the application of capsaicin and revealed several physiological (pain, thermoregulation) and pathophysiological (inflammation, gastric ulcer) mechanisms. He discovered a new neuroregulatory system without sensory efferent reflex and investigated its pharmacology. The authors of this review are his former Ph.D. students who carried out their doctoral work in Szolcsányi's laboratory between 1985 and 2010 and report on the scientific results obtained under his guidance. His research group provided evidence for the triple function of the peptidergic capsaicin-sensitive sensory neurons including classical afferent function, local efferent responses, and remote, hormone-like anti-inflammatory, and antinociceptive actions. They also proposed somatostatin receptor type 4 as a promising drug target for the treatment of pain and inflammation. They revealed that neonatal capsaicin treatment caused no acute neuronal death but instead long-lasting selective ultrastructural and functional changes in B-type sensory neurons, similar to adult treatment. They described that lipid raft disruption diminished the agonist-induced channel opening of the TRPV1, TRPA1, and TRPM8 receptors in native sensory neurons. Szolcsányi's group has developed new devices for noxious heat threshold measurement: an increasing temperature hot plate and water bath. This novel approach proved suitable for assessing the thermal antinociceptive effects of analgesics as well as for analyzing peripheral mechanisms of thermonociception.

10.
Front Mol Neurosci ; 16: 1186279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965042

RESUMO

The tachykinin hemokinin-1 (HK-1) is involved in immunological processes, inflammation, and pain. Although the neurokinin 1 receptor (NK1R) is described as its main target, several effects are mediated by currently unidentified receptor(s). The role of HK-1 in pain is controversial, depending on the involvement of peripheral and central sensitization mechanisms in different models. We earlier showed the ability of HK-1 to activate the trigeminovascular system, but the mechanisms need to be clarified. Therefore, in this study, we investigated HK-1-induced transcriptomic alterations in cultured rat trigeminal ganglion (TRG) primary sensory neurons. HK-1 was applied for 6 or 24 h in 1 µM causing calcium-influx in these neurons, 500 nM not inducing calcium-entry was used for comparison. Next-generation sequencing was performed on the isolated RNA, and transcriptomic changes were analyzed to identify differentially expressed (DE) genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. NK1R and Neurokinin receptor 2 (NK2R) were not detected. Neurokinin receptor 3 (NK3R) was around the detection limit, which suggests the involvement of other NKR isoforms or other receptors in HK-1-induced sensory neuronal activation. We found protease-activated receptor 1 (PAR1) and epidermal growth factor receptor (EGFR) as DE genes in calcium signaling. The transmembrane protein anthrax toxin receptor 2 (ANTXR2), a potential novel pain-related target, was upregulated. Acid-sensing ion channel 1; 3 (Asic1,3), N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors decreased, myelin production and maintenance related genes (Mbp, Pmp2, Myef2, Mpz) and GNDF changed by HK-1 treatment. Our data showed time and dose-dependent effects of HK-1 in TRG cell culture. Result showed calcium signaling as altered event, however, we did not detect any of NK receptors. Presumably, the activation of TRG neurons is independent of NK receptors. ANTXR2 is a potential new target, PAR-1 has also important role in pain, however their connection to HK-1 is unknown. These findings might highlight new targets or key mediators to solve how HK-1 acts on TRG.

11.
Sci Rep ; 13(1): 20030, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973885

RESUMO

The Tac4 gene-derived hemokinin-1 (HK-1) binds to the NK1 receptor, similarly to Substance P, and plays a role in acute stress reactions and pain transmission in mice. Here we investigated Tac4 mRNA expression in stress and pain-related regions and its involvement in chronic restraint stress-evoked behavioral changes and pain using Tac4 gene-deleted (Tac4-/-) mice compared to C57Bl/6 wildtypes (WT). Tac4 mRNA was detected by in situ hybridization RNAscope technique. Touch sensitivity was assessed by esthesiometry, cold tolerance by paw withdrawal latency from 0°C water. Anxiety was evaluated in the light-dark box (LDB) and open field test (OFT), depression-like behavior in the tail suspension test (TST). Adrenal and thymus weights were measured at the end of the experiment. We found abundant Tac4 expression in the hypothalamic-pituitary-adrenal axis, but Tac4 mRNA was also detected in the hippocampus, amygdala, somatosensory and piriform cortices in mice, and in the frontal regions and the amygdala in humans. In Tac4-/- mice of both sexes, stress-induced mechanical, but not cold hyperalgesia was significantly decreased compared to WTs. Stress-induced behavioral alterations were mild or absent in male WT animals, while significant changes of these parameters could be detected in females. Thymus weight decrease can be observed in both sexes. Higher baseline anxiety and depression-like behaviors were detected in male but not in female HK-1-deficient mice, highlighting the importance of investigating both sexes in preclinical studies. We provided the first evidence for the potent nociceptive and stress regulating effects of HK-1 in chronic restraint stress paradigm. Identification of its targets might open new perspectives for therapy of stress-induced pain.


Assuntos
Dor Crônica , Sistema Hipotálamo-Hipofisário , Humanos , Masculino , Animais , Feminino , Camundongos , Sistema Hipófise-Suprarrenal , Restrição Física , RNA Mensageiro/genética , Estresse Psicológico/complicações
12.
Nat Genet ; 55(11): 1820-1830, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37919453

RESUMO

Osteoporotic fracture is among the most common and costly of diseases. While reasonably heritable, its genetic determinants have remained elusive. Forearm fractures are the most common clinically recognized osteoporotic fractures with a relatively high heritability. To establish an atlas of the genetic determinants of forearm fractures, we performed genome-wide association analyses including 100,026 forearm fracture cases. We identified 43 loci, including 26 new fracture loci. Although most fracture loci associated with bone mineral density, we also identified loci that primarily regulate bone quality parameters. Functional studies of one such locus, at TAC4, revealed that Tac4-/- mice have reduced mechanical bone strength. The strongest forearm fracture signal, at WNT16, displayed remarkable bone-site-specificity with no association with hip fractures. Tall stature and low body mass index were identified as new causal risk factors for fractures. The insights from this atlas may improve fracture prediction and enable therapeutic development to prevent fractures.


Assuntos
Antebraço , Fraturas Ósseas , Animais , Camundongos , Estudo de Associação Genômica Ampla , Fraturas Ósseas/genética , Densidade Óssea/genética , Fatores de Risco
13.
J Pharm Pharmacol ; 75(12): 1581-1589, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37742055

RESUMO

OBJECTIVES: It has previously been shown that the peptide (34Pro,35Phe)CGRP27-37 is a potent calcitonin gene-related peptide, CGRP receptor antagonist, and in this project we aimed to improve the antagonist potency through the structural modification of truncated C-terminal CGRP peptides. METHODS: Six peptide analogues were synthesized and the anti-CGRP activity confirmed using both in vitro and in vivo studies. KEY FINDINGS: A 10 amino acid-containing peptide VPTDVGPFAF-NH2 (P006) was identified as a key candidate to take forward for in vivo evaluation, where it was shown to be an effective antagonist after intraperitoneal injection into mice. P006 was formulated as a preparation suitable for nasal administration by spray drying with chitosan to form mucoadhesive microcarriers (9.55 ± 0.91 mm diameter) and a loading of 0.2 mg peptide per 20 mg dose. CONCLUSIONS: The project has demonstrated the potential of these novel small peptide CGRP antagonists, to undergo future preclinical evaluation as anti-migraine therapeutics.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Aminoácidos/química , Transtornos de Enxaqueca/tratamento farmacológico
14.
Biomedicines ; 11(9)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37760890

RESUMO

Based on a prior university patent, the authors developed a novel type of bioimpedance-based test method to noninvasively detect nonalcoholic fatty liver disease (NAFLD). The development of a new potential NAFLD diagnostic procedure may help to understand the underlying mechanisms between NAFLD and severe liver diseases with a painless and easy-to-use paraclinical examination method, including the additional function to detect even the earlier stages of liver disease. The aim of this study is to present new results and the experiences gathered in relation to NAFLD progress during animal model and human clinical trials.

15.
Biomedicines ; 11(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37626651

RESUMO

Somatostatin (SST) released from capsaicin-sensitive sensory nerves in response to stimulation exerts systemic anti-inflammatory, analgesic actions. Its elevation correlates with the extent of tissue injury. We measured plasma SST alterations during spine operations (scoliosis and herniated disc) to determine whether its release might be a general protective mechanism during painful conditions. Sampling timepoints were baseline (1), after: soft tissue retraction (2), osteotomy (3), skin closure (4), the following morning (5). Plasma SST-like immunoreactivity (SST-LI) determined by radioimmunoassay was correlated with pain intensity and the correction angle (Cobb angle). In scoliosis surgery, postoperative pain intensity (VAS 2.) 1 day after surgery significantly increased (from 1.44 SEM ± 0.68 to 6.77 SEM ± 0.82, p = 0.0028) and positively correlated with the Cobb angle (p = 0.0235). The baseline Cobb degree negatively correlated (p = 0.0459) with the preoperative SST-LI. The plasma SST-LI significantly increased in fraction 3 compared to the baseline (p < 0.05), and significantly decreased thereafter (p < 0.001). In contrast, in herniated disc operations no SST-LI changes were observed in either group. The VAS decreased after surgery both in the traditional (mean 6.83 to 2.29, p = 0.0005) and microdiscectomy groups (mean 7.22 to 2.11, p = 0.0009). More extensive and destructive scoliosis surgery might cause greater tissue damage with greater pain (inflammation), which results in a significant SST release into the plasma from the sensory nerves. SST is suggested to be involved in an endogenous postoperative analgesic (anti-inflammatory) mechanism.

16.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569621

RESUMO

Capsaicin-sensitive peptidergic sensory nerves mediate triple actions: besides transmitting sensory and pain signals to the central nervous system (afferent function), they also have local and systemic efferent functions [...].


Assuntos
Neurônios Aferentes , Sistema Nervoso Periférico , Humanos , Neurônios Aferentes/fisiologia , Vias Aferentes , Capsaicina/farmacologia , Dor , Inflamação
17.
Front Immunol ; 14: 1182278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234175

RESUMO

Objective: Despite intensive research on rheumatoid arthritis, the pathomechanism of the disease is still not fully understood and the treatment has not been completely resolved. Previously we demonstrated that the GTPase-activating protein, ARHGAP25 has a crucial role in the regulation of basic phagocyte functions. Here we investigate the role of ARHGAP25 in the complex inflammatory process of autoantibody-induced arthritis. Methods: Wild-type and ARHGAP25 deficient (KO) mice on a C57BL/6 background, as well as bone marrow chimeric mice, were treated i.p. with the K/BxN arthritogenic or control serum, and the severity of inflammation and pain-related behavior was measured. Histology was prepared, leukocyte infiltration, cytokine production, myeloperoxidase activity, and superoxide production were determined, and comprehensive western blot analysis was conducted. Results: In the absence of ARHGAP25, the severity of inflammation, joint destruction, and mechanical hyperalgesia significantly decreased, similarly to phagocyte infiltration, IL-1ß, and MIP-2 levels in the tibiotarsal joint, whereas superoxide production or myeloperoxidase activity was unchanged. We observed a significantly mitigated phenotype in KO bone marrow chimeras as well. In addition, fibroblast-like synoviocytes showed comparable expression of ARHGAP25 to neutrophils. Significantly reduced ERK1/2, MAPK, and I-κB protein signals were detected in the arthritic KO mouse ankles. Conclusion: Our findings suggest that ARHGAP25 has a key role in the pathomechanism of autoantibody-induced arthritis in which it regulates inflammation via the I-κB/NF-κB/IL-1ß axis with the involvement of both immune cells and fibroblast-like synoviocytes.


Assuntos
Artrite Experimental , Superóxidos , Animais , Camundongos , Peroxidase/efeitos adversos , Camundongos Endogâmicos C57BL , Inflamação
18.
Eur Neuropsychopharmacol ; 73: 96-107, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37156112

RESUMO

The Transient Receptor Potential Vanilloid 1 (TRPV1) non-selective cation channel predominantly expressed in primary sensory neurons of the dorsal root and trigeminal ganglia mediates pain and neurogenic inflammation. TRPV1 mRNA and immunoreactivity were described in the central nervous system (CNS), but its precise expression pattern and function have not been clarified. Here we investigated Trpv1 mRNA expression in the mouse brain using ultrasensitive RNAScope in situ hybridization. The role of TRPV1 in anxiety, depression-like behaviors and memory functions was investigated by TRPV1-deficient mice and pharmacological antagonism by AMG9810. Trpv1 mRNA is selectively expressed in the supramammillary nucleus (SuM) co-localized with Vglut2 mRNA, but not with tyrosine hydroxylase immunopositivity demonstrating its presence in glutamatergic, but not dopaminergic neurons. TRPV1-deleted mice exhibited significantly reduced anxiety in the Light-Dark box and depression-like behaviors in the Forced Swim Test, but their performance in the Elevated Plus Maze as well as their spontaneous locomotor activity, memory and learning function in the Radial Arm Maze, Y-maze and Novel Object Recognition test were not different from WTs. AMG9810 (intraperitoneal injection 50 mg/kg) induced anti-depressant, but not anxiolytic effects. It is concluded that TRPV1 in the SuM might have functional relevance in mood regulation and TRPV1 antagonism could be a novel perspective for anti-depressant drugs.


Assuntos
Acrilamidas , Compostos Bicíclicos Heterocíclicos com Pontes , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Antidepressivos/farmacologia , Hipotálamo Posterior/metabolismo , RNA Mensageiro
19.
J Exp Med ; 220(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074415

RESUMO

Autoinflammatory diseases include a number of monogenic systemic inflammatory diseases, as well as acquired autoinflammatory diseases such as gout. Here, we show that the myeloid Src-family kinases Hck, Fgr, and Lyn are critical for experimental models of gout, as well as for genetically determined systemic inflammation in the Ptpn6me-v/me-v (motheaten viable) mouse model. The Hck-/-Fgr-/-Lyn-/- mutation abrogated various monosodium urate (MSU) crystal-induced pro-inflammatory responses of neutrophils, and protected mice from the development of gouty arthritis. The Src-family inhibitor dasatinib abrogated MSU crystal-induced responses of human neutrophils and reduced experimental gouty arthritis in mice. The Hck-/-Fgr-/-Lyn-/- mutation also abrogated spontaneous inflammation and prolonged the survival of the Ptpn6me-v/me-v mice. Spontaneous adhesion and superoxide release of Ptpn6me-v/me-v neutrophils were also abolished by the Hck-/-Fgr-/-Lyn-/- mutation. Excessive activation of tyrosine phosphorylation pathways in myeloid cells may characterize a subset of autoinflammatory diseases.


Assuntos
Artrite Gotosa , Gota , Doenças Hereditárias Autoinflamatórias , Camundongos , Humanos , Animais , Quinases da Família src/metabolismo , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-hck/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Artrite Gotosa/metabolismo , Gota/metabolismo , Inflamação/metabolismo , Doenças Hereditárias Autoinflamatórias/metabolismo
20.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982563

RESUMO

Chronic stress causes several pain conditions including fibromyalgia. Its pathophysiological mechanisms are unknown, and the therapy is unresolved. Since the involvement of interleukin-1 (IL-1) has been described in stress and inflammatory pain but no data are available regarding stress-induced pain, we studied its role in a chronic restraint stress (CRS) mouse model. Female and male C57Bl/6J wild-type (WT) and IL-1αß-deficient (knock-out: IL-1 KO) mice were exposed to 6 h of immobilization/day for 4 weeks. Mechanonociception, cold tolerance, behavioral alterations, relative thymus/adrenal gland weights, microglia ionized calcium-binding adaptor molecule 1 (IBA1) and astrocyte glial fibrillary acidic protein (GFAP) integrated density, number and morphological transformation in pain-related brain regions were determined. CRS induced 15-20% mechanical hyperalgesia after 2 weeks in WT mice in both sexes, which was significantly reduced in female but not in male IL-1 KOs. Increased IBA1+ integrated density in the central nucleus of amygdala, primary somatosensory cortex hind limb representation part, hippocampus cornu ammonis area 3 (CA3) and periaqueductal gray matter (PAG) was present, accompanied by a cell number increase in IBA1+ microglia in stressed female WTs but not in IL-1 KOs. CRS induced morphological changes of GFAP+ astrocytes in WT but not in KO mice. Stress evoked cold hypersensitivity in the stressed animals. Anxiety and depression-like behaviors, thymus and adrenal gland weight changes were detectable in all groups after 2 but not 4 weeks of CRS due to adaptation. Thus, IL-1 mediates chronic stress-induced hyperalgesia in female mice, without other major behavioral alterations, suggesting the analgesic potentials of IL-1 in blocking drugs in stress-related pain syndromes.


Assuntos
Astrócitos , Hiperalgesia , Camundongos , Masculino , Feminino , Animais , Hiperalgesia/metabolismo , Astrócitos/metabolismo , Microglia/metabolismo , Interleucina-1/metabolismo , Dor/metabolismo , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...