Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1101290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762110

RESUMO

Certain 4-substituted analogs of 1-(2,5-dimethoxyphenyl)isopropylamine (2,5-DMA) are psychoactive classical hallucinogens or serotonergic psychedelic agents that function as human 5-HT2A (h5-HT2A) serotonin receptor agonists. Activation of a related receptor population, h5-HT2B receptors, has been demonstrated to result in adverse effects including cardiac valvulopathy. We previously published on the binding of several such agents at the two receptor subtypes. We hypothesized that, due to their structural similarity, the 5-HT2A and 5-HT2B receptor affinities of these agents might be related, and that QSAR studies might aid future studies. For a series of 13 compounds, it is demonstrated here that i) their published rat brain 5-HT2 receptor affinities are significantly correlated with their h5-HT2A (r = 0.942) and h5-HT2B (r = 0.916) affinities, ii) as with r5-HT2 receptor affinity, h5-HT2A affinity is correlated with the lipophilicity of the 4-position substituent (r = 0.798), iii) that eight of the ten compounds examined in functional (Ca+2 mobilization in stable cell lines generated expressing the human 5-HT2B receptor using the Flp-In T-REx system) assays acted as h5-HT2B agonists (4-substituent = H, F, Br, I, OCH2CH3, NO2, nC3H7, tC4H9) and two (n-hexyl and benzyl) as antagonists, iv) h5-HT2B affinity but not action was correlated with the lipophilicity of the 4-position substituent (r = 0.750; n = 10). The findings suggest that h5-HT2B receptor affinity, and its relationship to substituent lipophilicity, might be approximated by rat and h5-HT2A affinity but cannot be used as a predictor of h5-HT2B agonist action of 2,5-DMA analogs. Furthermore, given that certain 2,5-DMA analogs are on the clandestine market, their potential to produce cardiac side effects following persistent or chronic use via activation of h5-HT2B receptors should be considered.

2.
ACS Chem Neurosci ; 12(5): 831-844, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33400504

RESUMO

Known classic psychedelic serotonin 2A receptor (5-HT2AR) agonists retain a tryptamine or phenethylamine at their structural core. However, activation of the 5-HT2AR can be elicited by drugs lacking these fundamental scaffolds. Such is the case of the N-substituted piperazine quipazine. Here, we show that quipazine bound to and activated 5-HT2AR as measured by [3H]ketanserin binding displacement, Ca2+ mobilization, and accumulation of the canonical Gq/11 signaling pathway mediator inositol monophosphate (IP1) in vitro and in vivo. Additionally, quipazine induced via 5-HT2AR an expression pattern of immediate early genes (IEG) in the mouse somatosensory cortex consistent with that of classic psychedelics. In the mouse head-twitch response (HTR) model of psychedelic-like action, quipazine produced a lasting effect with high maximal responses during the peak effect that were successfully blocked by the 5-HT2AR antagonist M100907 and absent in 5-HT2AR knockout (KO) mice. The acute effect of quipazine on HTR appeared to be unaffected by serotonin depletion and was independent from 5-HT3R activation. Interestingly, some of these features were shared by its deaza bioisostere 2-NP, but not by other closely related piperazine congeners, suggesting that quipazine might represent a distinct cluster within the family of psychoactive piperazines. Together, our results add to the mounting evidence that quipazine's profile matches that of classic psychedelic 5-HT2AR agonists at cellular signaling and behavioral pharmacology levels.


Assuntos
Alucinógenos , Quipazina , Animais , Alucinógenos/farmacologia , Ketanserina , Camundongos , Camundongos Knockout , Receptor 5-HT2A de Serotonina , Serotonina
3.
J Mol Struct ; 12022020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32616964

RESUMO

Certain 2-amino-3,4-dihydroquinazolines bind at 5-HT3 serotonin receptors and act as antagonists (e.g. 6-chloro) whereas others bind with little to no affinity and lack functional activity (e.g. 8-chloro). The purpose of this investigation was to gain insight as to why this might be the case. X-Ray crystallographic studies revealed that the N-C-N distances in the examined analogs are nearly identical (1.31 - 1.34 Å), suggesting that differences in N-C-N delocalization does not account for differences in affinity/action. Homology modeling hydrophatic interactions (HINT) analysis revealed that the 6-chloro analog formed a greater number, and more favorable, interactions with the receptor, whereas the 8-chloro analog formed fewer, and unfavorable, interactions. The affinity and activity of the 6-chloro quinazoline relative to its 8-chloro counterpart are unrelated to the N-C-N delocalization pattern but might be related to specific (favorable and unfavorable) interactions of quinazoline substituents with certain receptor features as determined by HINT analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...