Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 44(3): 30, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721135

RESUMO

We use dynamic numerical simulations to investigate the role of particle rotation in pairwise capillary interactions of particles trapped at a fluid interface. The fluid interface is modeled with a phase-field method which is coupled to the Navier-Stokes equations to solve for the flow dynamics. Numerical solutions are found using a finite element scheme in a bounded two-dimensional geometry. The interfacial deformations are caused by the buoyant weight of the particles, which are allowed to both translate and rotate due to the capillary and viscous forces and torques at play. The results show that the capillary attraction is faster between freely rotating particles than if particle rotation is inhibited, and the higher the viscosity mismatch, the greater the effect. To explain this result, we analyze the drag force exerted on the particles and find that the translational drag force on a rotating particle is always less than its non-rotating counterpart due to attenuated velocity gradients in the vicinity of the particle. We also find that the influence of interfacial deformations on particle rotation is minute.

2.
Eur Phys J E Soft Matter ; 43(2): 13, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32060763

RESUMO

We numerically investigate the influence of interfacial deformations on the drag force exerted on a particle straddling a fluid interface. We perform finite element simulations of the two-phase flow system in a bounded two-dimensional geometry. The fluid interface is modeled with a phase-field method which is coupled to the Navier-Stokes equations to solve for the flow dynamics. The interfacial deformations are caused by the buoyant weight of the particle, which results in curved menisci. We compute drag coefficients as a function of the three-phase contact angle, the viscosity ratio of the two fluids, and the particle density. Our results show that, for some parameter values, large drag forces are not necessarily correlated with large interfacial distortions and that a lower drag may actually be achieved with non-flat interfaces rather than with unperturbed ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...