Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 33(7): e2907, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37602909

RESUMO

Agricultural practices and intensification during the past two centuries have dramatically altered the abundance and temporal continuity of floral resources that support pollinating insects such as bumble bees. Long-term trends among bumble bees within agricultural regions suggest that intensive agricultural conditions have created inhospitable conditions for some species, while other species have maintained their relative abundances despite landscape-level changes in flower availability. Bumble bee responses to spatiotemporal resource heterogeneity have been explored at the colony and behavioral level, but we have yet to understand whether these conditions drive community structure and ultimately explain the diverging patterns in long-term species trends. To explore the relationship between landscape-level floral resource continuity and the likelihood of bumble bee occurrence, we mapped the relative spatial and temporal availability of floral resources within an intensive agricultural region in the US Upper Midwest and related this resource availability with bumble bee species relative abundance. Across the bee community, we found that relative bumble bee occurrence increases in landscapes containing more abundant and more temporally continuous floral resources. Declining species, such as Bombus terricola, exhibited the strongest, positive responses to resource abundance and continuity whereas common, stable species, such as Bombus impatiens, showed no statistical relationship to either. Together with existing experimental evidence, this work suggests that efforts to increase spatiotemporal flower availability, along with overall flower abundance at landscape scales may have positive effects on bumble bee communities in the US Upper Midwest.


Assuntos
Agricultura , Flores , Abelhas , Animais , Ecossistema , Polinização
3.
Am J Bot ; 108(11): 2196-2207, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34622948

RESUMO

PREMISE: Many animals provide ecosystem services in the form of pollination including honeybees, which have become globally dominant floral visitors. A rich literature documents considerable variation in single visit pollination effectiveness, but this literature has yet to be extensively synthesized to address whether honeybees are effective pollinators. METHODS: We conducted a hierarchical meta-analysis of 168 studies and extracted 1564 single visit effectiveness (SVE) measures for 240 plant species. We paired SVE data with visitation frequency data for 69 of these studies. We used these data to ask three questions: (1) Do honeybees (Apis mellifera) and other floral visitors differ in their SVE? (2) To what extent do plant and pollinator attributes predict differences in SVE between honeybees and other visitors? (3) Is there a correlation between visitation frequency and SVE? RESULTS: Honeybees were significantly less effective than the most effective non-honeybee pollinators but were as effective as the average pollinator. The type of pollinator moderated these effects. Honeybees were less effective compared to the most effective and average bird and bee pollinators but were as effective as other taxa. Visitation frequency and SVE were positively correlated, but this trend was largely driven by data from communities where honeybees were absent. CONCLUSIONS: Although high visitation frequencies make honeybees important pollinators, they were less effective than the average bee and rarely the most effective pollinator of the plants they visit. As such, honeybees may be imperfect substitutes for the loss of wild pollinators, and safeguarding pollination will benefit from conservation of non-honeybee taxa.


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Flores , Plantas
4.
Ecol Lett ; 24(9): 1800-1813, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34143928

RESUMO

Agricultural intensification is a key suspect among putative drivers of recent insect declines, but an explicit link between historical change in agricultural land cover and insect occurrence is lacking. Determining whether agriculture impacts beneficial insects (e.g. pollinators), is crucial to enhancing agricultural sustainability. Here, we combine large spatiotemporal sets of historical bumble bee and agricultural records to show that increasing cropland extent and decreasing crop richness were associated with declines in over 50% of bumble bee species in the agriculturally intensive Midwest, USA. Critically, we found that high crop diversity was associated with a higher occurrence of many species pre-1950 even in agriculturally dominated areas, but that current agricultural landscapes are devoid of high crop diversity. Our findings suggest that insect conservation and agricultural production may be compatible, with increasing on-farm and landscape-level crop diversity predicted to have positive effects on bumble bees.


Assuntos
Agricultura , Insetos , Animais , Abelhas , Polinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...