Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 413(15): 4023-4036, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33903945

RESUMO

The primary aim of this study was to identify biomarkers of exposure to some so-called Schedule 1 sulfur mustard (HD) analogues, in order to facilitate and expedite their retrospective analysis in case of alleged use of such compounds. Since these HD analogues can be regarded as model compounds for possible impurities of HD formed during synthesis processes, the secondary aim was to explore to which extent these biomarkers can be used for chemical provenancing of HD in case biomedical samples are available. While the use of chemical attribution signatures (CAS) for neat chemicals or for environmental samples has been addressed quite frequently, the use of CAS for investigating impurities in biomedical samples has been addressed only scarcely. Human plasma was exposed to each of the five HD analogues. After pronase or proteinase K digestion of precipitated protein and sample work-up, the histidine (His) and tripeptide (CPF) adducts to proteins were analyzed, respectively. Adducts of the analogues could still be unambiguously identified next to the main HD adducts in processed plasma samples after exposure to HD mixed with each of the analogues, at a 1% level relative to HD. In conclusion, we have identified plasma protein adducts of a number of HD analogues, which can be used as biomarkers to assess an exposure to these Schedule 1 chemicals. We have shown that adducts of these analogues can still be analyzed after work-up of plasma samples which had been exposed to these analogues in a mixture with HD, supporting the hypothesis that biomedical sample analysis might be useful for chemical provenancing.


Assuntos
Proteínas Sanguíneas/química , Espectrometria de Massas/métodos , Gás de Mostarda/análogos & derivados , Biomarcadores/análise , Substâncias para a Guerra Química/análise , Humanos , Gás de Mostarda/química
2.
RSC Adv ; 9(46): 26902-26914, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35528597

RESUMO

ZrO2@SiO2 core-shell submicron particles are promising candidates for the development of advanced optical materials. Here, submicron zirconia particles were synthesized using a modified sol-gel method and pre-calcined at 400 °C. Silica shells were grown on these particles (average size: ∼270 nm) with well-defined thicknesses (26 to 61 nm) using a seeded-growth Stöber approach. To study the thermal stability of bare ZrO2 cores and ZrO2@SiO2 core-shell particles they were calcined at 450 to 1200 °C. After heat treatments, the particles were characterized by SEM, TEM, STEM, cross-sectional EDX mapping, and XRD. The non-encapsulated, bare ZrO2 particles predominantly transitioned to the tetragonal phase after pre-calcination at 400 °C. Increasing the temperature to 600 °C transformed them to monoclinic. Finally, grain coarsening destroyed the spheroidal particle shape after heating to 800 °C. In striking contrast, SiO2-encapsulation significantly inhibited grain growth and the t → m transition progressed considerably only after heating to 1000 °C, whereupon the particle shape, with a smooth silica shell, remained stable. Particle disintegration was observed after heating to 1200 °C. Thus, ZrO2@SiO2 core-shell particles are suited for high-temperature applications up to ∼1000 °C. Different mechanisms are considered to explain the markedly enhanced stability of ZrO2@SiO2 core-shell particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...