Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(11): 116801, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774288

RESUMO

More than twenty years ago, multiferroic compounds combining in particular magnetism and ferroelectricity were rediscovered. Since then, BiFeO_{3} has emerged as the most outstanding multiferroic by combining at room temperature almost all the fundamental or applicative properties that may be desired: electroactive spin wave excitations called electromagnons, conductive domain walls, or a low band gap of interest for magnonic devices. All these properties have so far only been discontinuously strain engineered in thin films according to the lattice parameter imposed by the substrate. Here we explore the ferroelectricity and the dynamic magnetic response of BiFeO_{3} bulk under continuously tunable uniaxial strain. Using elasto-Raman spectroscopy, we show that the ferroelectric soft mode is strongly enhanced under tensile strain and driven by the volume preserving deformation at low strain. The magnonic response is entirely modified with low energy magnon modes being suppressed for tensile strain above pointing out a transition from a cycloid to an homogeneous magnetic state. Effective Hamiltonian calculations show that the ferroelectric and the antiferrodistortive modes compete in the tensile regime. In addition, the homogeneous antiferromagnetic state becomes more stable compared to the cycloidal state above a +2% tensile strain close to the experimental value. Finally, we reveal the ferroelectric and magnetic orders of BiFeO_{3} under uniaxial strain and how the tensile strain allows us to unlock and to modify in a differentiated way the polarization and the magnetic structure.

2.
J Phys Condens Matter ; 33(49)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34507312

RESUMO

Time resolved pump and probe acoustics and first-principles calculations were employed to assess elastic properties of the TbMnO3perovskite manganite having orthorhombic symmetry. Measuring sound velocities of bulk longitudinal and shear acoustic waves propagating along at least two different directions in the high symmetry planes (100), (010) and (001), provided a powerful mean to selectively determine the six diagonal elastic constantsC11= 227 GPa,C22= 349 GPa,C33= 274 GPa,C44= 71 GPa,C55= 57 GPa,C66= 62 GPa. Among the three remaining off-diagonal ones,C23= 103 GPa was determined with a bissectrice direction. Density functional theory calculations with colinear spin-polarized provided complementary insights on their optical, elastic and magnetoelastic properties.

3.
J Phys Condens Matter ; 33(12): 125403, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33463531

RESUMO

κ-(BEDT-TTF)2Cu(NCS)2 has been investigated by Raman scattering in both bulk and nanoparticle compounds. Phonon modes from 20 to 1600 cm-1 have been assigned. Focusing on the unexplored low frequency phonons, a plateau in frequencies is observed in the bulk phonons between 50 and 100 K and assigned to the signature of the bad metal phase. Nanoparticles of κ-(BEDT-TTF)2Cu(NCS)2 exhibit anomalies at 50 K associated to the crossover from a bad metal to a Fermi liquid whose origins are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...