Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 8(8): 2447-51, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18624390

RESUMO

We describe the preparation by electrodeposition of arrays of lead telluride (PbTe) nanowires using the lithographically patterned nanowire electrodeposition (LPNE) method. PbTe nanowires had a rectangular cross-section with adjustable width and height ranging between 60-400 nm (w) and 20-100 nm (h). The characterization of these nanowire arrays using X-ray diffraction, transmission electron microscopy and electron diffraction, scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy (XPS) is reported. PbTe nanowires were electrodeposited using a cyclic electrodeposition-stripping technique that produced polycrystalline, stoichiometric, face-centered cubic PbTe with a mean grain diameter of 10-20 nm. These nanowires were more than 1 mm in length and two additional processing steps permitted their suspension across 25 microm air gaps microfabricated on these surfaces. The LPNE synthesis of lithographically patterned PbTe nanowires was carried out in unfiltered laboratory air. Nanowires with lengths of 70-100 microm showed an electrical resistivity comparable to bulk PbTe. XPS reveals that exposure of PbTe nanowires to air causes the formation on the nanowire surface of approximately one monolayer of a mixed lead oxide and tellurium oxide within a few minutes.

2.
Langmuir ; 23(20): 10372-9, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17715955

RESUMO

One-dimensional (1D) ensembles of 2-15 nm diameter gold nanoparticles were prepared using physical vapor deposition (PVD) on highly oriented pyrolytic graphite (HOPG) basal plane surfaces. These 1D Au nanoparticle ensembles (NPEs) were prepared by depositing gold (0.2-0.6 nm/s) at an equivalent thickness of 3-4 nm onto HOPG surfaces at 670-690 K. Under these conditions, vapor-deposited gold nucleated selectively at the linear step edge defects present on these HOPG surfaces with virtually no nucleation of gold particles on terraces. The number density of 2-15 nm diameter gold particles at step edges was 30-40 microm-1. These 1D NPEs were up to a millimeter in length and organized into parallel arrays on the HOPG surface, following the organization of step edges. Surprisingly, the deposition of more gold by PVD did not lead to the formation of continuous gold nanowires at step edges under the range of sample temperature or deposition flux we have investigated. Instead, these 1D Au NPEs were used as nucleation templates for the preparation by electrodeposition of gold nanowires. The electrodeposition of gold occurred selectively on PVD gold nanoparticles over the potential range from 700-640 mV vs SCE, and after optimization of the electrodeposition parameters continuous gold nanowires as small as 80-90 nm in diameter and several micrometers in length were obtained.

3.
Langmuir ; 22(25): 10564-74, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17129031

RESUMO

Nanowires composed of the thermoelectric material Bi2Te3 were synthesized on highly oriented pyrolytic graphite (HOPG) electrodes using the electrochemical step edge decoration (ESED) method. Nanowire synthesis was initiated by applying a voltage pulse of -0.75 V versus SCE for 5 ms to an HOPG electrode in an aqueous solution containing both Bi3+ and TeO22-, thereby producing nuclei at the step edges. Bi2Te3 was electrodeposited onto these nuclei using a cyclic electrodeposition-stripping scheme that involved the electrodeposition of bismuth-rich Bi2Te3 on a negative-going voltammetric scan (to -0.05 V) and the subsequent anodic stripping of excess bismuth from these nanowires during a positive-going scan (to +0.35 V). When this cycle was repeated 10-50 times, Bi2Te3 nanowires in the 100-300-nm-diameter range were obtained. These nanowires were narrowly dispersed in diameter (RSDdia = 10-20%), were more than 100 microm in length, and were organized into parallel arrays containing hundreds of wires. Smaller nanowires, with diameters down to 30 nm, were obtained by electrooxidizing 150-nm-diameter Bi2Te3 nanowires at +0.37 V under conditions of kinetic control. This oxidation process unexpectedly improved the uniformity of Bi2Te3 nanowires, and X-ray photoelectron spectroscopy (XPS) shows that these nanowires retain a Bi2Te3 core but also have a thin surface layer composed of Bi and Te oxides. The ability of Bi2Te3 nanowires to generate electrical power was assessed by transferring ensembles of these nanowires onto cyanoacrylate-coated glass surfaces and evaporating 4-point nickel contacts. A dimensionless figure of merit, ZT, ranging from 0 to 0.85 was measured for fresh samples that were less than 1 day old. XPS reveals that Bi2Te3 nanowires are oxidized within a week to Bi2O3 and TeO2. These oxides may interfere with the application by evaporation of electrical contacts to these nanowires.


Assuntos
Ligas/síntese química , Bismuto/química , Fontes de Energia Elétrica , Nanotubos/química , Telúrio/química , Ligas/química , Eletroquímica , Eletrodos , Galvanoplastia , Grafite/química , Oxirredução , Tamanho da Partícula , Sensibilidade e Especificidade , Espectrometria por Raios X/métodos , Espectrofotometria/métodos , Fatores de Tempo , Difração de Raios X , Raios X
4.
Nano Lett ; 5(11): 2319-24, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16277476

RESUMO

Silver(I) oxide (Ag2O) micro- and nanoparticles were electrochemically synthesized by anodizing a sacrificial silver wire in a basic aqueous sulfate solution. Ag2O particles were released from the silver electrode surface during synthesis producing a visible sol "stream". The composition of these particles was established using selected area electron diffraction, X-ray diffraction, and X-ray photoelectron spectroscopy. The shape of Ag2O crystallites could be adjusted using the potential of the silver wire generator electrode. The generation of a dispersed Ag2O sol and the observed shape selectivity are both explained by a two-step mechanism involving the anodic dissolution of silver metal, Ag0 --> Ag+(aq) + 1e-, followed by the precipitation of Ag2O particles, 2Ag+ + 2OH- --> Ag2O(s) + H2O. Within 100 mV of the voltage threshold for particle growth, cubic particles with a depression in each face ("hopper crystals") were produced. The application of more positive voltages resulted in the generation of 8-fold symmetric "flower"-shaped particles formed as a consequence of fast growth in the <111> crystallographic direction. The diameter of flower particles was adjustable from 250 nm to 1.8 microm using the growth duration at constant potential.

5.
Anal Chem ; 77(16): 5205-14, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16097760

RESUMO

Ensembles of silver nanowires (AgNEs) with diameters ranging from 200 nm to 1.0 microm have been prepared by electrochemical step edge decoration. These AgNEs showed a rapid (< 5 s), reversible increase in resistance upon exposure to the vapor of ammonia, trimethylamine, and pyridine. The amplitude of the resistance change was up to +3000% (DeltaR/Ro)-more than 2 orders of magnitude larger than can be explained based on boundary layer scattering effects. We experimentally probe the mechanism for this resistance modulation in the case of ammonia, and we propose a model to describe it. Conductive tip atomic force microscopy was used to probe individual sections of nanowires in AgNEs; these data revealed that the resistance change caused by NH(3) exposure was concentrated within a minority (approximately 10%) of the 5-microm wire segments that were probed--not uniformly distributed along each nanowire. All AgNEs showed a temperature dependence of their resistance, alpha, that was smaller than expected for silver metal. Highly sensitive AgNEs sometimes showed a negative alpha, characteristic of semiconductors, but negative alpha values were never observed for AgNEs with a low sensitivity to NH3. AgNEs did not respond to hydrocarbons, O2, H2O, N2, CO, or Ar, but a large (DeltaR/Ro > |-50%|) irreversible decrease in resistance was seen upon exposures to acids including HCl, HNO3, and H2SO4. Based on these and other data, we propose a model in which oxidized constrictions in silver nanowires limit the conductivity of the wire and provide a means for "gating" conduction based on the protonation state of the oxide surface.

6.
J Phys Chem B ; 109(8): 3169-82, 2005 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16851337

RESUMO

Molybdenum disulfide nanowires and nanoribbons have been synthesized by a two-step, electrochemical/chemical synthetic method. In the first step, MoO(x) wires (a mixture of MoO(2) and MoO(3)) were electrodeposited size-selectively by electrochemical step-edge decoration on a highly oriented pyrolytic graphite (HOPG) surface. Then, MoO(x) precursor wires were converted to MoS(2) by exposure to H(2)S either at 500-700 degrees C, producing "low-temperature" or LT MoS(2) nanowires that were predominantly 2H phase, or above 800 degrees C producing "high-temperature" or HT MoS(2) ribbons that were predominantly 3R phase. The majority of these MoS(2) wires and ribbons were more than 50 microm in length and were organized into parallel arrays containing hundreds of wires or ribbons. MoS(2) nanostructures were characterized by X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, selected area electron diffraction, X-ray diffraction, UV-visible absorption spectrometry, and Raman spectroscopy. HT and LT MoS(2) nanowires were structurally distinct: LT MoS(2) wires were hemicylindrical in shape and nearly identical in diameter to the MoO(x) precursor wires from which they were derived. LT MoS(2) wires were polycrystalline, and the internal structure consisted of many interwoven, multilayer strands of MoS(2); HT MoS(2) ribbons were 50-800 nm in width and 3-100 nm thick, composed of planar crystallites of 3R-MoS(2). These layers grew in van der Waals contact with the HOPG surface so that the c-axis of the 3R-MoS(2) unit cell was oriented perpendicular to the plane of the graphite surface. Arrays of MoS(2) wires and ribbons could be cleanly separated from the HOPG surface and transferred to glass for electrical and optical characterization. Optical absorption measurements of HT MoS(2) nanoribbons reveal a direct gap near 1.95 eV and two exciton peaks, A1 and B1, characteristic of 3R-MoS(2). These exciton peaks shifted to higher energy by up to 80 meV as the wire thickness was decreased to 7 nm (eleven MoS(2) layers). The energy shifts were proportional to 1/ L( parallel)(2), and the effective masses were calculated. Current versus voltage curves for both LT and HT MoS(2) nanostructures were probed as a function of temperature from -33 degrees C to 47 degrees C. Conduction was ohmic and mainly governed by the grain boundaries residing along the wires. The thermal activation barrier was found to be related to the degree of order of the crystallites and can be tuned from 126 meV for LT nanowires to 26 meV for HT nanoribbons.

7.
Anal Chem ; 68(5): 713-9, 1996 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21619164

RESUMO

A microscopic laser desorption/postionization Fourier transform mass spectrometer (LD/FTMS) is described. The lateral resolution can be <1 µm with the inherent FTMS high mass resolution intact. Laser postionization allows a certain selectivity and an increase in sensitivity. This capability should allow materials characterization in a wide variety of cases. We demonstrate microscopic desorption and postionization for atoms and molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...