Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(23): 15885-15896, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37259579

RESUMO

Recently it has been revealed that proteins in solid samples undergo slow overall rocking. The parameters of this motion depend on intermolecular interactions. Therefore, the characterization of the rocking motion enables one to investigate protein-protein interactions. NMR R1ρ relaxometry is the most suitable tool to study slow molecular motions. However, the time scale of the rocking motion is on the edge of the dynamics window of the standard R1ρ experiment, precluding the R1ρ data analysis from being precise and reliable. In this work, we apply a modified R1ρ relaxation method to characterize the slow motion in solids with much higher precision and reliability. The modification is the simultaneous use of a strong 1H-CW pulse and a weak/moderate 15N spin-lock pulse. We demonstrate theoretically and experimentally that under this condition, R1ρ decays have a significantly better signal-to-noise ratio and a much shorter "dead time" caused by the initial oscillations compared to the conventional R1ρ experiment. Moreover, the proton-decoupled R1ρ's can be measured at a much smaller difference between the spin-lock and MAS frequencies; thus, much slower molecular motions can be sampled. The proton decoupling during the 15N spin-lock pulse also suppresses the interfering coherent spin-spin relaxation pathway at low spin-lock fields, which overlaps the Bloch-McConnell (chemical exchange) range of R1ρ dispersions. The proton-decoupled and standard R1ρ experiments were used to study the rocking motion of 15N,2H-enriched protein GB1 in two solid forms, microcrystals and lyophilized amorphous powder. The most striking finding is that the correlation function of this motion consists of two components with very different correlation times, 2-20 µs and a few hundred µs. The rocking motion parameters in microcrystals and powder are quite different, revealing the distinct nature of inter-protein interactions in these two samples.


Assuntos
Proteínas , Prótons , Pós , Reprodutibilidade dos Testes , Proteínas/química , Espectroscopia de Ressonância Magnética/métodos , Movimento (Física)
2.
Magn Reson (Gott) ; 2(2): 589-606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37905222

RESUMO

Chemical shift tensors in 13C solid-state NMR provide valuable localized information on the chemical bonding environment in organic matter, and deviations from isotropic static-limit powder line shapes sensitively encode dynamic-averaging or orientation effects. Studies in 13C natural abundance require magic-angle spinning (MAS), where the analysis must thus focus on spinning sidebands. We propose an alternative fitting procedure for spinning sidebands based upon a polynomial expansion that is more efficient than the common numerical solution of the powder average. The approach plays out its advantages in the determination of CST (chemical-shift tensor) principal values from spinning-sideband intensities and order parameters in non-isotropic samples, which is here illustrated with the example of stretched glassy polycarbonate.

3.
Sci Rep ; 9(1): 10294, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31312015

RESUMO

Formation of mineral-organic associations is a key process in the global carbon cycle. Recent concepts propose litter quality-controlled microbial assimilation and direct sorption processes as main factors in transferring carbon from plant litter into mineral-organic associations. We explored the pathways of the formation of mineral-associated organic matter (MOM) in soil profiles along a 120-ky ecosystem gradient that developed under humid climate from the retreating Franz Josef Glacier in New Zealand. We determined the stocks of particulate and mineral-associated carbon, the isotope signature and microbial decomposability of organic matter, and plant and microbial biomarkers (lignin phenols, amino sugars and acids) in MOM. Results revealed that litter quality had little effect on the accumulation of mineral-associated carbon and that plant-derived carbon bypassed microbial assimilation at all soil depths. Seemingly, MOM forms by sorption of microbial as well as plant-derived compounds to minerals. The MOM in carbon-saturated topsoil was characterized by the steady exchange of older for recent carbon, while subsoil MOM arises from retention of organic matter transported with percolating water. Overall, MOM formation is not monocausal but involves various mechanisms and processes, with reactive minerals being effective filters capable of erasing chemical differences in organic matter inputs.

4.
RSC Adv ; 9(61): 35735-35750, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35528082

RESUMO

NMR spectroscopy at two magnetic field strengths was employed to investigate the dynamics of dimethylimidazolium dimethylphosphate ([C1C1IM][(CH3)2PO4]). [C1C1IM][(CH3)2PO4] is a low-melting, halogen-free ionic liquid comprising of only methyl groups. 13C spin-lattice relaxation rates as well as self-diffusion coefficients were measured for [C1C1IM][(CH3)2PO4] as a function of temperature. The rotational correlation times, τ c, for the cation and the anion were obtained from the 13C spin-lattice relaxation rates. Although from a theoretical point of view cations and anions are similar in size, they show different reorientation mobilities and diffusivities. The self-diffusion coefficients and the rotational correlation times were related to the radii of the diffusing spheres. The analysis reveals that the radii of the cation and the anion, respectively, are different from each other but constant at temperatures ranging from 293 to 353 K. The experimental results are rationalised by a discrete and individual cation and anion diffusion. The [(CH3)2PO4]- anion reorients faster compared to the cation but diffuses significantly slower indicating the formation of anionic aggregates. Relaxation data were acquired with standard liquid and magic-angle-spinning NMR probes to estimate residual dipolar interactions, chemical shift anisotropy or differences in magnetic susceptibility within the sample.

5.
Solid State Nucl Magn Reson ; 82-83: 29-34, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28187332

RESUMO

A method is described for the elimination of artefacts that arise in time-domain signals because of the presence of digital and analogous filters. Such artefacts are mostly located at the beginning of the free-induction decay (FID). The procedure introduced here is particularly important if at least one signal component decays rather quickly, i.e. if there is only a small number of data containing this component (as for solid-state 1H or 2H FIDs). The method is able to restore the original signal by deconvolution of the spectrometer output from the transfer function of the spectrometer console. The transfer function is connected to the filter characteristics. Experimental estimation of this function is demonstrated. The estimation applies differentiation of the output signal in the case of a step-like input. This kind of input could be realized either by very slowly decaying FID or by digitizer overflow. The results are discussed with respect to the best approximation of original FID.

6.
J Magn Reson ; 260: 28-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26397218

RESUMO

Proton NMR spin-diffusion experiments are often combined with magic-angle spinning (MAS) to achieve higher spectral resolution of solid samples. Here we show that local proton spin diffusion can indeed become faster at low (<10 kHz) spinning rates as compared to static conditions. Spin diffusion under static conditions can thus be slower than the often referred value of 0.8 nm(2)/ms, which was determined using slow MAS (Clauss et al., 1993). The enhancement of spin diffusion by slow MAS relies on the modulation of the orientation-dependent dipolar couplings during sample rotation and goes along with transient level crossings in combination with dipolar truncation. The experimental finding and its explanation is supported by density matrix simulations, and also emphasizes the sensitivity of spin diffusion to the local coupling topology. The amplification of spin diffusion by slow MAS cannot be explained by any model based on independent spin pairs; at least three spins have to be considered.

7.
Solid State Nucl Magn Reson ; 72: 50-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26404771

RESUMO

We review basic principles of low-resolution proton NMR spin diffusion experiments, relying on mobility differences in nm-sized phases of inhomogeneous organic materials such as block-co- or semicrystalline polymers. They are of use for estimates of domain sizes and insights into nanometric dynamic inhomogeneities. Experimental procedures and limitations of mobility-based signal decomposition/filtering prior to spin diffusion are addressed on the example of as yet unpublished data on semicrystalline poly(ϵ-caprolactone), PCL. Specifically, we discuss technical aspects of the quantitative, dead-time free detection of rigid-domain signals by aid of the magic-sandwich echo (MSE), and magic-and-polarization-echo (MAPE) and double-quantum (DQ) magnetization filters to select rigid and mobile components, respectively. Such filters are of general use in reliable fitting approaches for phase composition determinations. Spin diffusion studies at low field using benchtop instruments are challenged by rather short (1)H T1 relaxation times, which calls for simulation-based analyses. Applying these, in combination with domain sizes as determined by small-angle X-ray scattering, we have determined spin diffusion coefficients D for PCL (0.34, 0.19 and 0.032nm(2)/ms for crystalline, interphase and amorphous parts, respectively). We further address thermal-history effects related to secondary crystallization. Finally, the state of knowledge concerning the connection between D values determined locally at the atomic level, using (13)C detection and CP- or REDOR-based "(1)H hole burning" procedures, and those obtained by calibration experiments, is summarized. Specifically, the non-trivial dependence of D on the magic-angle spinning (MAS) frequency, with a minimum under static and a local maximum under moderate-MAS conditions, is highlighted.

8.
Chemphyschem ; 14(13): 3146-55, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23780575

RESUMO

Carbon-proton dipole-dipole couplings between bonded atoms represent a popular probe of molecular dynamics in soft materials or biomolecules. Their site-resolved determination, for example, by using the popular DIPSHIFT experiment, can be challenged by spectral overlap with nonbonded carbon atoms. The problem can be solved by using very short cross-polarization (CP) contact times, however, the measured modulation curves then deviate strongly from the theoretically predicted shape, which is caused by the dependence of the CP efficiency on the orientation of the CH vector, leading to an anisotropic magnetization distribution even for isotropic samples. Herein, we present a detailed demonstration and explanation of this problem, as well as providing a solution. We combine DIPSHIFT experiments with the rotor-directed exchange of orientations (RODEO) method, and modifications of it, to redistribute the magnetization and obtain undistorted modulation curves. Our strategy is general in that it can also be applied to other types of experiments for heteronuclear dipole-dipole coupling determinations that rely on dipolar polarization transfer. It is demonstrated with perylene-bisimide-based organic semiconductor materials, as an example, in which measurements of dynamic order parameters reveal correlations of the molecular dynamics with the phase structure and functional properties.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Análise de Fourier , Imidas/química , Estrutura Molecular , Compostos Orgânicos/química , Perileno/análogos & derivados , Perileno/química , Semicondutores
9.
Langmuir ; 28(31): 11615-24, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22783886

RESUMO

In the present work, we describe the successful stabilization of bolalipid nanofibers by sol-gel condensation (silicification) of tetraethoxysilane (TEOS) or 3-mercaptopropyltriethoxysilane (MP-TEOS), respectively, onto the nanofibers. The conditions for an effective and reproducible silicification reaction were determined, and the silicification process was pursued by transmission electron microscopy (TEM). The resulting bolalipid-silica composite nanofibers were characterized by means of differential scanning calorimetry (DSC), TEM, (13)C, and (31)P NMR spectroscopy. Finally, the novel silicified bolalipid nanofibers were used as templates for the fixation of 5 and 2 nm AuNPs, respectively, resulting in one of the rare examples of one-dimensional AuNP arrangements in aqueous suspension.


Assuntos
Ouro/química , Lipídeos/química , Nanopartículas Metálicas/química , Nanofibras/química , Compostos Organofosforados/química , Silanos/química , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Transmissão , Transição de Fase , Propriedades de Superfície , Água/química
10.
Solid State Nucl Magn Reson ; 40(2): 84-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21856132

RESUMO

In solid-state NMR studies of minerals and ion conductors, quadrupolar nuclei like (7)Li, (23)Na or (133)Cs are frequently situated in close proximity to fluorine, so that application of (19)F decoupling is beneficial for spectral resolution. Here, we compare the decoupling efficiency of various multi-pulse decoupling sequences by acquiring (19)F-decoupled (23)Na-NMR spectra of cryolite (Na(3)AlF(6)). Whereas the MAS spectrum is only marginally affected by application of (19)F decoupling, the 3Q-filtered (23)Na signal is very sensitive to it, as the de-phasing caused by the dipolar interaction between sodium and fluorine is three-fold magnified. Experimentally, we find that at moderate MAS speeds, the decoupling efficiencies of the frequency-swept decoupling schemes SW(f)-TPPM and SW(f)-SPINAL are significantly better than the conventional TPPM and SPINAL sequences. The frequency-swept sequences are therefore the methods of choice for efficient decoupling of quadrupolar nuclei with half-integer spin from fluorine.

11.
Langmuir ; 23(14): 7715-23, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17547425

RESUMO

The formation of temperature-, concentration-, and pH-responsive hydrogels composed of the symmetric long-chain bolaamphiphile dotriacontane-1,1'-diyl bis[[2-(dimethylammonio)ethyl]phosphate] (Me(2)PE-C32-Me(2)PE) was investigated by rheological, scattering, and spectroscopic techniques. At pH 5, this bolaamphiphile is known to form a dense network of helically structured nanofibers (Köhler et al. Soft Matter 2006, 2, 77-86). Rheological measurements and dynamic light scattering were used to describe the macroscopic behavior of the hydrogels. Small-angle neutron scattering (SANS) and time-resolved static light scattering were applied to get information about the morphology of the self-assembled aggregates. Finally, solid-state 31P NMR spectroscopy was used to gain insight into the mobility of the bolaamphiphile molecules within the fiber aggregates. In comparison with the previously examined trimethylammonio analogue PC-C32-PC, which forms temperature-dependent hydrogels, Me(2)PE-C32-Me(2)PE exhibits additional concentration- and pH-dependent gelling properties. The significantly higher stability of the Me(2)PE-C32-Me(2)PE hydrogel is supported by the SANS data, which indicate the presence of fiber aggregates up to 50 degrees C.


Assuntos
Diacetil/análogos & derivados , Hidrogéis/química , Alcanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Metilaminas/química , Nêutrons , Reologia , Espalhamento a Baixo Ângulo , Temperatura
12.
Rev Sci Instrum ; 78(4): 045101, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17477687

RESUMO

An instrument is described that allows the use of Fourier transform infrared (FTIR) spectroscopy as a detection system for kinetic processes after a pressure jump of up to 100 bars. The pressure is generated using a high performance liquid chromatography (HPLC) pump and water as a pressure transducing medium. A flexible membrane separates the liquid sample in the IR cell from the pressure transducing medium. Two electromagnetic switching valves in the setup enable pressure jumps with a decay time of 4 ms. The FTIR spectrometer is configured to measure time resolved spectra in the millisecond time regime using the rapid scan mode. All components are computer controlled. For a demonstration of the capability of the method first results on the kinetics of a phase transition between two lamellar phases of an aqueous phospholipid dispersion are presented. This combination of FTIR spectroscopy with the pressure jump relaxation technique can also be used for other systems which display cooperative transitions with concomitant volume changes.


Assuntos
Transição de Fase , Espectroscopia de Infravermelho com Transformada de Fourier , Cromatografia Líquida de Alta Pressão , Cinética , Fosfolipídeos/análise , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Fatores de Tempo
13.
J Magn Reson ; 181(1): 68-78, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16617030

RESUMO

In solid-state NMR of quadrupolar nuclei with half-integer spin I, fast amplitude-modulated (FAM) pulse trains have been utilised to enhance the intensity of the central-transition signal, by transferring spin population from the satellite transitions. In this paper, the signal-enhancement performance of the recently introduced SW-FAM pulse train with swept modulation frequency [T. Bräuniger, K. Ramaswamy, P.K. Madhu, Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses, Chem. Phys. Lett. 383 (2004) 403-410] is explored in more detail for static spectra. It is shown that by sweeping the modulation frequencies linearly over the pulse pairs (SW1/tau-FAM), the shape of the frequency distribution is improved in comparison to the original pulse scheme (SWtau-FAM). For static spectra of 27Al (I=5/2), better signal-enhancement performance is found for the SW1/tau-FAM sequence, as demonstrated both by experiments and numerical simulations.

14.
J Inorg Biochem ; 98(3): 439-46, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14987844

RESUMO

Na(2)[PtCl(6)] was found to react with (9-MeAH)Cl(.)H(2)O (2) (9-MeA=9-methyladenine) in aqueous solution yielding (9-MeAH)(2)[PtCl(6)](.)2H(2)O (3). The same compound was obtained from hexachloroplatinic acid and 9-methyladenine. Performing this reaction at 60 degrees C, complex formation took place yielding the 9-methyladeninium complex [PtCl(5)(9-MeAH)](.)2H(2)O (4a). An analogous complex, [PtCl(5)(9-MeAH)](.)1/2(18C6)(.)H(2)O (4b, 18C6=crown ether 18-crown-6), was formed in the reaction of aquapentachloroplatinic acid (H(3)O)[PtCl(5)(H(2)O)](.)2(18C6)(.)6H(2)O (1) with 9-methyladenine in 1:1 ratio. All complexes were isolated in moderate to good yields as yellow powder (4b) and crystals (3, 4a), respectively. They were fully characterized by microanalysis, IR and NMR ((1)H, (13)C, (195)Pt) spectroscopies, and in part (2, 3, 4a) also by single-crystal X-ray diffraction analysis. Molecular structure of complex 4a exhibited that the 9-methyladeninium ligand is N1 protonated and coordinated through N7 to platinum(IV).


Assuntos
Adenina/análogos & derivados , Adenina/química , Hidrocarbonetos Clorados/química , Compostos Organoplatínicos/química , Cristalografia por Raios X , Hidrocarbonetos Clorados/síntese química , Ligantes , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Compostos Organoplatínicos/síntese química
15.
Biochim Biophys Acta ; 1650(1-2): 117-27, 2003 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-12922175

RESUMO

Two types of dynamic solid-state NMR experiments-relaxation and 1D-MAS exchange-were combined for the investigation of the backbone dynamics of a 15% randomly 15N-enriched protein barstar in both free and binase-bound states. The main novelty of this work is a simultaneous quantitative processing of the results of these two types of experiments that we call Simultaneous Relaxation and Exchange Data Analysis (SREDA) approach. It extends the well-known model-free approach such that it permits to discriminate between various motional models (jumps between different sites, wobbling in a cone, etc.). This objective cannot be achieved by analyzing the relaxation or exchange data separately. The SREDA approach was applied to probe a modification of the average backbone dynamics of barstar upon forming a complex with another protein binase. T(1) and off-resonance T(1rho) relaxation times of 15N backbone nuclei were measured at three temperatures between 0 and 45 degrees C, 1D-MAS exchange (CODEX) data were obtained at room temperature within the mixing time range from 0.3 to 200 ms. It has been found that the barstar backbone participates in two molecular processes with correlation times in the 10(-9)-10(-7) and 10(-3)-10(-2) s ranges. Forming the complex with binase results in a significant decrease of the amplitudes of both motions, suggesting that the complex is a more rigid and stable structure than free barstar.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Bacillus/enzimologia , Proteínas de Bactérias/química , Interpretação Estatística de Dados , Endorribonucleases/química , Espectroscopia de Ressonância Magnética , Método de Monte Carlo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...