Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 3(4): e1964, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18398480

RESUMO

BACKGROUND: Tube expansion defects like stenoses and atresias cause devastating human diseases. Luminal expansion during organogenesis begins to be elucidated in several systems but we still lack a mechanistic view of the process in many organs. The Drosophila tracheal respiratory system provides an amenable model to study tube size regulation. In the trachea, COPII anterograde transport of luminal proteins is required for extracellular matrix assembly and the concurrent tube expansion. PRINCIPAL FINDINGS: We identified and analyzed Drosophila COPI retrograde transport mutants with narrow tracheal tubes. gammaCOP mutants fail to efficiently secrete luminal components and assemble the luminal chitinous matrix during tracheal tube expansion. Likewise, tube extension is defective in salivary glands, where it also coincides with a failure in the luminal deposition and assembly of a distinct, transient intraluminal matrix. Drosophila gammaCOP colocalizes with cis-Golgi markers and in gammaCOP mutant embryos the ER and Golgi structures are severely disrupted. Analysis of gammaCOP and Sar1 double mutants suggests that bidirectional ER-Golgi traffic maintains the ER and Golgi compartments and is required for secretion and assembly of luminal matrixes during tube expansion. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the function of COPI components in organ morphogenesis and highlight the common role of apical secretion and assembly of transient organotypic matrices in tube expansion. Intraluminal matrices have been detected in the notochord of ascidians and zebrafish COPI mutants show defects in notochord expansion. Thus, the programmed deposition and growth of distinct luminal molds may provide distending forces during tube expansion in diverse organs.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Drosophila/metabolismo , Animais , Transporte Biológico , Proteína Coatomer/metabolismo , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Matriz Extracelular/metabolismo , Complexo de Golgi/metabolismo , Modelos Biológicos , Mutação , Fenótipo , Sistema Respiratório , Traqueia/metabolismo
2.
Dev Cell ; 13(2): 214-25, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17681133

RESUMO

The development of air-filled respiratory organs is crucial for survival at birth. We used a combination of live imaging and genetic analysis to dissect respiratory organ maturation in the embryonic Drosophila trachea. We found that tracheal tube maturation entails three precise epithelial transitions. Initially, a secretion burst deposits proteins into the lumen. Solid luminal material is then rapidly cleared from the tubes, and shortly thereafter liquid is removed. To elucidate the cellular mechanisms behind these transitions, we identified gas-filling-deficient mutants showing narrow or protein-clogged tubes. These mutations either disrupt endoplasmatic reticulum-to-Golgi vesicle transport or endocytosis. First, Sar1 is required for protein secretion, luminal matrix assembly, and diametric tube expansion. Subsequently, a sharp pulse of Rab5-dependent endocytic activity rapidly internalizes and clears luminal contents. The coordination of luminal matrix secretion and endocytosis may be a general mechanism in tubular organ morphogenesis and maturation.


Assuntos
Polaridade Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Endocitose , Células Epiteliais/metabolismo , Traqueia/embriologia , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Sobrevivência Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/ultraestrutura , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Epitélio/metabolismo , Complexo de Golgi/metabolismo , Modelos Biológicos , Mutação/genética , Fenótipo , Subunidades Proteicas/metabolismo , Transporte Proteico , Traqueia/citologia , Traqueia/ultraestrutura , Zigoto , Proteínas rab5 de Ligação ao GTP/metabolismo
3.
Dev Biol ; 296(1): 253-64, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16764850

RESUMO

A key step in organogenesis of the Drosophila tracheal system is the integration of isolated tracheal metameres into a connected tubular network. The interaction of tracheal cells with surrounding mesodermal cells is crucial in this process. In particular, single mesodermal cells called bridge-cells are essential for the guided outgrowth of dorsal trunk branches to direct formation of the main airway, the dorsal trunk. Here, we present evidence that the two leucine-rich repeat transmembrane proteins Capricious and Tartan contribute differently to the formation of branch interconnections during tracheal development. Capricious is specifically localized on the surface of bridge-cells and facilitates the outgrowing dorsal trunk cells of adjacent metameres toward each other. We show that Capricious requires both extracellular and intracellular domains during tracheal branch outgrowth. In contrast, Tartan is expressed broadly in mesodermal cells and exerts its role in tracheal branch outgrowth through its extracellular domain. We propose that Capricious contributes to the instructive role of bridge-cells whereas Tartan provides permissive substrate for the migrating tracheal cells during the network formation.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Leucina/química , Proteínas de Membrana/fisiologia , Proteínas/fisiologia , Traqueia/embriologia , Sequência de Aminoácidos , Animais , Movimento Celular/fisiologia , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/química , Drosophila melanogaster/química , Proteínas de Repetições Ricas em Leucina , Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Dados de Sequência Molecular , Proteínas/química
4.
Curr Biol ; 16(2): 180-5, 2006 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-16431370

RESUMO

The function of tubular epithelial organs like the kidney and lung is critically dependent on the length and diameter of their constituting branches. Genetic analysis of tube size control during Drosophila tracheal development has revealed that epithelial septate junction (SJ) components and the dynamic chitinous luminal matrix coordinate tube growth. However, the underlying molecular mechanisms controlling tube expansion so far remained elusive. Here, we present the analysis of two luminal chitin binding proteins with predicted polysaccharide deacetylase activities (ChLDs). ChLDs are required to assemble the cable-like extracellular matrix (ECM) and restrict tracheal tube elongation. Overexpression of native, but not of mutated, ChLD versions also interferes with the structural integrity of the intraluminal ECM and causes aberrant tube elongation. Whereas ChLD mutants have normal SJ structure and function, the luminal deposition of the ChLD requires intact cellular SJs. This identifies a new molecular function for SJs in the apical secretion of ChLD and positions ChLD downstream of the SJs in tube length control. The deposition of the chitin luminal matrix first promotes and coordinates radial tube expansion. We propose that the subsequent structural modification of chitin by chitin binding deacetylases selectively instructs the termination of tube elongation to the underlying epithelium.


Assuntos
Amidoidrolases/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Drosophila/enzimologia , Junções Intercelulares/enzimologia , Traqueia/embriologia , Amidoidrolases/metabolismo , Animais , Forma Celular , Proteínas de Drosophila/análise , Proteínas de Drosophila/metabolismo , Matriz Extracelular/enzimologia , Matriz Extracelular/ultraestrutura , Morfogênese , Fenótipo , Traqueia/citologia
5.
Dev Cell ; 9(3): 423-30, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16139230

RESUMO

Epithelial tubes are found in many vital organs and require uniform and correct tube diameters for optimal function. Tube size depends on apical membrane growth and subapical cytoskeletal reorganization, but the cues that coordinate these events to ensure functional tube shape remain elusive. We find that epithelial tubes in the Drosophila trachea require luminal chitin polysaccharides to attain the correct diameter. Tracheal chitin forms a broad transient filament within the tubes during the restricted period of expansion. Loss of chitin causes tubular constrictions and cysts associated with irregular subapical cytoskeletal organization, without affecting epithelial integrity and polarity. Analysis of previously identified tube expansion mutants in genes encoding septate junction proteins further suggests that septate junction components may function in tubulogenesis through their role in luminal matrix assembly. We propose that the transient luminal protein/polysaccharide matrix is sensed by the epithelial cells and coordinates cytoskeletal organization to ensure uniform lumen diameter.


Assuntos
Quitina/metabolismo , Drosophila/metabolismo , Células Epiteliais/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Modelos Biológicos , Sistema Respiratório/embriologia , Animais , Forma Celular/fisiologia , Quitina/deficiência , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Drosophila/ultraestrutura , Matriz Extracelular/fisiologia , Matriz Extracelular/ultraestrutura , Polissacarídeos/metabolismo , Sistema Respiratório/metabolismo , Sistema Respiratório/ultraestrutura , Junções Íntimas/fisiologia
6.
Genes Dev ; 18(17): 2161-71, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15342493

RESUMO

Slit proteins steer the migration of many cell types through their binding to Robo receptors, but how Robo controls cell motility is not clear. We describe the functional analysis of vilse, a Drosophila gene required for Robo repulsion in epithelial cells and axons. Vilse defines a conserved family of RhoGAPs (Rho GTPase-activating proteins), with representatives in flies and vertebrates. The phenotypes of vilse mutants resemble the tracheal and axonal phenotypes of Slit and Robo mutants at the CNS midline. Dosage-sensitive genetic interactions between vilse, slit, and robo mutants suggest that vilse is a component of robo signaling. Moreover, overexpression of Vilse in the trachea of robo mutants ameliorates the phenotypes of robo, indicating that Vilse acts downstream of Robo to mediate midline repulsion. Vilse and its human homolog bind directly to the intracellular domains of the corresponding Robo receptors and promote the hydrolysis of RacGTP and, less efficiently, of Cdc42GTP. These results together with genetic interaction experiments with robo, vilse, and rac mutants suggest a mechanism whereby Robo repulsion is mediated by the localized inactivation of Rac through Vilse.


Assuntos
Axônios/metabolismo , Movimento Celular/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Animais , Axônios/fisiologia , Southern Blotting , Sistema Nervoso Central/fisiologia , Primers do DNA , Drosophila , Proteínas de Drosophila/fisiologia , Células Epiteliais/fisiologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/fisiologia , Glutationa Transferase , Hibridização In Situ , Mutação/genética , Proteínas do Tecido Nervoso/fisiologia , Receptores Imunológicos/fisiologia , Análise de Sequência de DNA , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas Roundabout
7.
Development ; 130(2): 249-58, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12466193

RESUMO

Epithelial organogenesis involves concerted movements and growth of distinct subcellular compartments. We show that apical membrane enlargement is critical for lumenal elongation of the Drosophila airways, and is independently controlled by the transcription factor Grainy head. Apical membrane overgrowth in grainy head mutants generates branches that are too long and tortuous without affecting epithelial integrity, whereas Grainy head overexpression limits lumenal growth. The chemoattractant Branchless/FGF induces tube outgrowth, and we find that it upregulates Grainy head activity post-translationally, thereby controlling apical membrane expansion to attain its key role in branching. We favour a two-step model for FGF in branching: first, induction of cell movement and apical membrane growth, and second, activation of Grainy head to limit lumen elongation, ensuring that branches reach and attain their characteristic lengths.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Insetos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Membrana Celular/metabolismo , Polaridade Celular , Tamanho Celular , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Epitélio/crescimento & desenvolvimento , Genes Reporter , Imuno-Histoquímica , Microscopia Eletrônica , Morfogênese , Traqueia/anatomia & histologia , Traqueia/crescimento & desenvolvimento , Fatores de Transcrição/genética , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...