Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Adv ; 6(8): eaay1192, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128401

RESUMO

Optical wavefront shaping is a powerful tool for controlling photons in strongly scattering media. Its speed, however, has been the bottleneck for in vivo applications. Moreover, unlike spatial focusing, temporal focusing from a continuous-wave source has rarely been exploited yet is highly desired for nonlinear photonics. Here, we present a novel real-time frequency-encoded spatiotemporal (FEST) focusing technology. FEST focusing uses a novel programmable two-dimensional optical frequency comb with an ultrafine linewidth to perform single-shot wavefront measurements, with a fast single-pixel detector. This technique enables simultaneous spatial and temporal focusing at microsecond scales through thick dynamic scattering media. This technology also enabled us to discover the large-scale temporal shift, a new phenomenon that, with the conventional spatial memory effect, establishes a space-time duality. FEST focusing opens a new avenue for high-speed wavefront shaping in the field of photonics.

2.
J Biomed Opt ; 24(3): 1-11, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30156064

RESUMO

Digital optical phase conjugation (DOPC) enables many optical applications by permitting focusing of light through scattering media. However, DOPC systems require precise alignment of all optical components, particularly of the spatial light modulator (SLM) and camera, in order to accurately record the wavefront and perform playback through the use of time-reversal symmetry. We present a digital compensation technique to optimize the alignment of the SLM in five degrees of freedom, permitting focusing through thick scattering media with a thickness of 5 mm and transport scattering coefficient of 2.5 mm - 1 while simultaneously improving focal quality, as quantified by the peak-to-background ratio, by several orders of magnitude over an unoptimized alignment.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos , Dispositivos Ópticos , Espalhamento de Radiação
3.
Appl Phys Lett ; 111(22): 221109, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29249832

RESUMO

In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ∼1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.

4.
Appl Phys Lett ; 111(20): 201108, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29203931

RESUMO

Optical scattering prevents light from being focused through thick biological tissue at depths greater than ∼1 mm. To break this optical diffusion limit, digital optical phase conjugation (DOPC) based wavefront shaping techniques are being actively developed. Previous DOPC systems employed spatial light modulators that modulated either the phase or the amplitude of the conjugate light field. Here, we achieve optical focusing through scattering media by using polarization modulation based generalized DOPC. First, we describe an algorithm to extract the polarization map from the measured scattered field. Then, we validate the algorithm through numerical simulations and find that the focusing contrast achieved by polarization modulation is similar to that achieved by phase modulation. Finally, we build a system using an inexpensive twisted nematic liquid crystal based spatial light modulator (SLM) and experimentally demonstrate light focusing through 3-mm thick chicken breast tissue. Since the polarization modulation based SLMs are widely used in displays and are having more and more pixel counts with the prevalence of 4 K displays, these SLMs are inexpensive and valuable devices for wavefront shaping.

5.
J Biomed Opt ; 21(12): 121502, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27626770

RESUMO

One of the prime limiting factors of optical imaging in biological applications is the diffusion of light by tissue, which prevents focusing at depths greater than the optical diffusion limit (typically ?1??mm). To overcome this challenge, wavefront shaping techniques that use a spatial light modulator (SLM) to correct the phase of the incident wavefront have recently been developed. These techniques are able to focus light through scattering media beyond the optical diffusion limit. However, the low speeds of typically used liquid crystal SLMs limit the focusing speed. Here, we present a method using a digital micromirror device (DMD) and an electro-optic modulator (EOM) to measure the scattering-induced aberrations, and using a liquid crystal SLM to apply the correction to the illuminating wavefront. By combining phase modulation from an EOM with the DMD's ability to provide selective illumination, we exploit the DMD's higher refresh rate for phase measurement. We achieved focusing through scattering media in less than 8 ms, which is sufficiently short for certain in vivo applications, as it is comparable to the speckle correlation time of living tissue.


Assuntos
Cristais Líquidos , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Algoritmos , Difusão , Desenho de Equipamento , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...