Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2018): 20232840, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471557

RESUMO

Scientific knowledge is produced in multiple languages but is predominantly published in English. This practice creates a language barrier to generate and transfer scientific knowledge between communities with diverse linguistic backgrounds, hindering the ability of scholars and communities to address global challenges and achieve diversity and equity in science, technology, engineering and mathematics (STEM). To overcome those barriers, publishers and journals should provide a fair system that supports non-native English speakers and disseminates knowledge across the globe. We surveyed policies of 736 journals in biological sciences to assess their linguistic inclusivity, identify predictors of inclusivity, and propose actions to overcome language barriers in academic publishing. Our assessment revealed a grim landscape where most journals were making minimal efforts to overcome language barriers. The impact factor of journals was negatively associated with adopting a number of inclusive policies whereas ownership by a scientific society tended to have a positive association. Contrary to our expectations, the proportion of both open access articles and editors based in non-English speaking countries did not have a major positive association with the adoption of linguistically inclusive policies. We proposed a set of actions to overcome language barriers in academic publishing, including the renegotiation of power dynamics between publishers and editorial boards.


Assuntos
Disciplinas das Ciências Biológicas , Editoração , Idioma , Linguística
2.
Neuroscience ; 541: 118-132, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38301739

RESUMO

Aggression is a social behavior that is critical for survival and reproduction. In adults, circulating gonadal hormones, such as androgens, act on neural circuits to modulate aggressive interactions, especially in reproductive contexts. In many species, individuals also demonstrate aggression before reaching gonadal maturation. Adult male song sparrows, Melospiza melodia, breed seasonally but maintain territories year-round. Juvenile (hatch-year) males aggressively compete for territory ownership during their first winter when circulating testosterone is low. Here, we characterized the relationship between the steroid milieu and aggressive behavior in free-living juvenile male song sparrows in winter. We investigated the effect of a 10 min simulated territorial intrusion (STI) on behavior and steroid levels in blood, 10 microdissected brain regions, and four peripheral tissues (liver, pectoral muscle, adrenal glands, and testes). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we quantified 12 steroids: pregnenolone, progesterone, corticosterone, 11-dehydrocorticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17ß-estradiol, 17α-estradiol, estrone, and estriol. We found that juvenile males are robustly aggressive, like adult males. An STI increases progesterone and corticosterone levels in blood and brain and increases 11-dehydrocorticosterone levels in blood only. Pregnenolone, androgens, and estrogens are generally non-detectable and are not affected by an STI. In peripheral tissues, steroid concentrations are very high in the adrenals. These data suggest that adrenal steroids, such as progesterone and corticosterone, might promote juvenile aggression and that juvenile and adult songbirds might rely on distinct neuroendocrine mechanisms to support similar aggressive behaviors.


Assuntos
Aves Canoras , Humanos , Animais , Masculino , Aves Canoras/fisiologia , Corticosterona , Progesterona/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Testosterona , Androgênios , Agressão/fisiologia , Estradiol/farmacologia , Pregnenolona/farmacologia
3.
Nat Ecol Evol ; 7(8): 1181-1193, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429904

RESUMO

Explaining broad molecular, phenotypic and species biodiversity patterns necessitates a unifying framework spanning multiple evolutionary scales. Here we argue that although substantial effort has been made to reconcile microevolution and macroevolution, much work remains to identify the links between biological processes at play. We highlight four major questions of evolutionary biology whose solutions require conceptual bridges between micro and macroevolution. We review potential avenues for future research to establish how mechanisms at one scale (drift, mutation, migration, selection) translate to processes at the other scale (speciation, extinction, biogeographic dispersal) and vice versa. We propose ways in which current comparative methods to infer molecular evolution, phenotypic evolution and species diversification could be improved to specifically address these questions. We conclude that researchers are in a better position than ever before to build a synthesis to understand how microevolutionary dynamics unfold over millions of years.


Assuntos
Evolução Biológica , Evolução Molecular , Biodiversidade
4.
Syst Biol ; 72(5): 1188-1198, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37248967

RESUMO

Evolutionary dynamics operating across deep time leave footprints in the shapes of phylogenetic trees. For the last several decades, researchers have used increasingly large and robust phylogenies to study the evolutionary history of individual clades and to investigate the causes of the glaring disparities in diversity among groups. Whereas typically not the focal point of individual clade-level studies, many researchers have remarked on recurrent patterns that have been observed across many different groups and at many different time scales. Whereas previous studies have documented various such regularities in topology and branch length distributions, they have typically focused on a single pattern and used a disparate collection (oftentimes, of quite variable reliability) of trees to assess it. Here we take advantage of modern megaphylogenies and unify previous disparate observations about the shapes embedded in the Tree of Life to create a catalog of the "major features of macroevolution." By characterizing such a large swath of subtrees in a consistent way, we hope to provide a set of phenomena that process-based macroevolutionary models of diversification ought to seek to explain.


Assuntos
Evolução Biológica , Filogenia , Reprodutibilidade dos Testes , Fatores de Tempo
5.
Am Nat ; 201(4): 574-585, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36957999

RESUMO

AbstractCommunity trait assembly, the formation of distributions of phenotypic characteristics across coexisting species, can occur via two main processes: filtering of trait distributions from the regional pool and in situ phenotypic evolution in local communities. But the relative importance of these processes remains unclear, largely because of the difficulty in determining the timing of evolutionary trait changes and biogeographic dispersal events in phylogenies. We assessed evolutionary and biogeographic transitions in woody plant species across the Indo-Malay archipelago, a series of island groups where the same plant lineages interact with different seed disperser and seed predator assemblages. Fruit size in 2,650 taxa spanning the angiosperm tree of life tended to be smaller in the Sulawesi and Maluku island groups, where frugivores are less diverse and smaller bodied, than in the regional source pool. While numerous plant lineages (not just small-fruited ones) reached the isolated islands, colonists tended to be the smaller-fruited members of each clade. Nearly all of the evolutionary transitions to smaller fruit size predated, often substantially, organismal dispersal to the islands. Our results suggest that filtering rather than within-island evolution largely determined the distribution of fruit sizes in these regions.


Assuntos
Magnoliopsida , Dispersão de Sementes , Frutas , Sementes , Plantas , Filogenia , Magnoliopsida/genética
6.
Evolution ; 76(7): 1625-1637, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35567800

RESUMO

Numerous phylogenetic studies reported the existence of a pervasive scaling relationship between the ages of extant eukaryotic clades and their estimated diversification rates. The causes of this age-rate-scaling (ARS), whether biological and/or artifactual, remain unresolved. Here we fit diversification models to thousands of eukaryotic time-calibrated phylogenies to explore multiple potential causes of the ARS including parameter non-identifiability, model inadequacy, biases in taxonomic practice, and an important and ubiquitous form of sampling bias-preferentially analyzing larger extant clades. We distinguish between two mechanism by which such sampling biases can cause an ARS: First, by favoring clades that happen to be unusually large merely by chance (i.e., due to the stochastic nature of the cladogenic process), thus leading to rate overestimation, and second, by favoring clades that have truly higher diversification rates. We find that, of the proposed explanations, only sampling biases are likely to contribute to the observed ARS. We develop methods for fully correcting for sampling bias mechanism 1, and find that despite these corrections a substantial ARS remains. We then confirm using simulations that preferring trees with truly higher rates (mechanism 2) likely explains this residual ARS. Since we do not have a completely unbiased sample of clades, including extinct ones, for phylogenetic analyses, it is difficult to demonstrate unambiguously that sampling biases are the sole cause of the ARS. Sampling biases are, however, a parsimonious and plausible explanation for this widely observed macroevolutionary pattern, and this has implications for how we interpret the distribution of diversification rate estimates in extant clades.


Assuntos
Biodiversidade , Eucariotos , Especiação Genética , Filogenia , Viés de Seleção
7.
Ecology ; 101(2): e02919, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31674003

RESUMO

The Serengeti ecosystem contains one of the most diverse bird assemblages in Africa. We present here a data set consisting of abundances of bird species in different habitats of the Serengeti ecosystem over a 87-yr time frame. This data set comprises 66,643 georeferenced occurrences for 568 species from 1929 to 2017. Most records contain feeding location, food source, distribution status, and observation locality. The records originate from three different but complementary methodologies: points, sites, and transects. The point method (bird species records 1929-2017) is based on ad hoc observations and includes rare species or those in special habitats. These points came from published records as well from the research program of A. R. E. Sinclair and colleagues. The site method (1966-2017) is based on structured observations at sites selected to represent specific habitats, and replicated within habitats and over time. At each site, birds were recorded by sight and sound over a radius of 50 m for 10 min. The transect method (1997-2011) is based on road transects covering different areas of the ecosystem. Road transects were traversed using a vehicle with observers travelling at 30 km/h. Bird species were those easily seen from a vehicle out to 50 m either side. As most transects were traversed multiple times, this method provides information on temporal change in abundance for a select set of species. No copyright restrictions apply to the use of this data set other than citing this publication.


Assuntos
Aves , Ecossistema , África , Animais , Biodiversidade
9.
Proc Natl Acad Sci U S A ; 116(15): 7403-7408, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910958

RESUMO

For centuries, biologists have been captivated by the vast disparity in species richness between different groups of organisms. Variation in diversity is widely attributed to differences between groups in how fast they speciate or go extinct. Such macroevolutionary rates have been estimated for thousands of groups and have been correlated with an incredible variety of organismal traits. Here we analyze a large collection of phylogenetic trees and fossil time series and describe a hidden generality among these seemingly idiosyncratic results: speciation and extinction rates follow a scaling law in which both depend on the age of the group in which they are measured, with the fastest rates in the youngest clades. Using a series of simulations and sensitivity analyses, we demonstrate that the time dependency is unlikely to be a result of simple statistical artifacts. As such, this time scaling is likely a genuine feature of the tree of life, hinting that the dynamics of biodiversity over deep time may be driven in part by surprisingly simple and general principles.


Assuntos
Evolução Biológica , Modelos Biológicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...